Enter a problem...
Calculus Examples
Step 1
Rewrite as .
Step 2
Step 2.1
Apply the distributive property.
Step 2.2
Apply the distributive property.
Step 2.3
Apply the distributive property.
Step 3
Step 3.1
Simplify each term.
Step 3.1.1
Rewrite using the commutative property of multiplication.
Step 3.1.2
Multiply by by adding the exponents.
Step 3.1.2.1
Move .
Step 3.1.2.2
Multiply by .
Step 3.1.3
Multiply by .
Step 3.1.4
Multiply by .
Step 3.1.5
Multiply by .
Step 3.1.6
Multiply by .
Step 3.2
Subtract from .
Step 4
Differentiate using the Product Rule which states that is where and .
Step 5
Step 5.1
To apply the Chain Rule, set as .
Step 5.2
Differentiate using the Power Rule which states that is where .
Step 5.3
Replace all occurrences of with .
Step 6
Step 6.1
Move to the left of .
Step 6.2
By the Sum Rule, the derivative of with respect to is .
Step 6.3
Since is constant with respect to , the derivative of with respect to is .
Step 6.4
Add and .
Step 6.5
Since is constant with respect to , the derivative of with respect to is .
Step 6.6
Multiply by .
Step 6.7
Differentiate using the Power Rule which states that is where .
Step 6.8
Multiply by .
Step 6.9
By the Sum Rule, the derivative of with respect to is .
Step 6.10
Since is constant with respect to , the derivative of with respect to is .
Step 6.11
Differentiate using the Power Rule which states that is where .
Step 6.12
Multiply by .
Step 6.13
Since is constant with respect to , the derivative of with respect to is .
Step 6.14
Differentiate using the Power Rule which states that is where .
Step 6.15
Multiply by .
Step 6.16
Since is constant with respect to , the derivative of with respect to is .
Step 6.17
Add and .
Step 7
Step 7.1
Apply the distributive property.
Step 7.2
Multiply by .
Step 7.3
Multiply by .
Step 7.4
Multiply by .
Step 7.5
Factor out of .
Step 7.5.1
Factor out of .
Step 7.5.2
Factor out of .
Step 7.5.3
Factor out of .