Enter a problem...
Calculus Examples
y=ln((x)ln(x))y=ln((x)ln(x))
Step 1
Remove parentheses.
y=ln(xln(x))y=ln(xln(x))
Step 2
Differentiate both sides of the equation.
ddx(y)=ddx(ln(xln(x)))
Step 3
The derivative of y with respect to x is y′.
y′
Step 4
Step 4.1
Differentiate using the chain rule, which states that ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=ln(x) and g(x)=xln(x).
Step 4.1.1
To apply the Chain Rule, set u1 as xln(x).
ddu1[ln(u1)]ddx[xln(x)]
Step 4.1.2
The derivative of ln(u1) with respect to u1 is 1u1.
1u1ddx[xln(x)]
Step 4.1.3
Replace all occurrences of u1 with xln(x).
1xln(x)ddx[xln(x)]
1xln(x)ddx[xln(x)]
Step 4.2
Use the properties of logarithms to simplify the differentiation.
Step 4.2.1
Rewrite xln(x) as eln(xln(x)).
1xln(x)ddx[eln(xln(x))]
Step 4.2.2
Expand ln(xln(x)) by moving ln(x) outside the logarithm.
1xln(x)ddx[eln(x)ln(x)]
1xln(x)ddx[eln(x)ln(x)]
Step 4.3
Raise ln(x) to the power of 1.
1xln(x)ddx[eln1(x)ln(x)]
Step 4.4
Raise ln(x) to the power of 1.
1xln(x)ddx[eln1(x)ln1(x)]
Step 4.5
Use the power rule aman=am+n to combine exponents.
1xln(x)ddx[eln(x)1+1]
Step 4.6
Add 1 and 1.
1xln(x)ddx[eln2(x)]
Step 4.7
Differentiate using the chain rule, which states that ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=ex and g(x)=ln2(x).
Step 4.7.1
To apply the Chain Rule, set u2 as ln2(x).
1xln(x)(ddu2[eu2]ddx[ln2(x)])
Step 4.7.2
Differentiate using the Exponential Rule which states that ddu2[au2] is au2ln(a) where a=e.
1xln(x)(eu2ddx[ln2(x)])
Step 4.7.3
Replace all occurrences of u2 with ln2(x).
1xln(x)(eln2(x)ddx[ln2(x)])
1xln(x)(eln2(x)ddx[ln2(x)])
Step 4.8
Combine eln2(x) and 1xln(x).
eln2(x)xln(x)ddx[ln2(x)]
Step 4.9
Differentiate using the chain rule, which states that ddx[f(g(x))] is f′(g(x))g′(x) where f(x)=x2 and g(x)=ln(x).
Step 4.9.1
To apply the Chain Rule, set u3 as ln(x).
eln2(x)xln(x)(ddu3[u32]ddx[ln(x)])
Step 4.9.2
Differentiate using the Power Rule which states that ddu3[u3n] is nu3n-1 where n=2.
eln2(x)xln(x)(2u3ddx[ln(x)])
Step 4.9.3
Replace all occurrences of u3 with ln(x).
eln2(x)xln(x)(2ln(x)ddx[ln(x)])
eln2(x)xln(x)(2ln(x)ddx[ln(x)])
Step 4.10
Combine fractions.
Step 4.10.1
Combine 2 and eln2(x)xln(x).
2eln2(x)xln(x)(ln(x)ddx[ln(x)])
Step 4.10.2
Combine ln(x) and 2eln2(x)xln(x).
ln(x)(2eln2(x))xln(x)ddx[ln(x)]
ln(x)(2eln2(x))xln(x)ddx[ln(x)]
Step 4.11
The derivative of ln(x) with respect to x is 1x.
ln(x)(2eln2(x))xln(x)⋅1x
Step 4.12
Multiply ln(x)(2eln2(x))xln(x) by 1x.
ln(x)(2eln2(x))xln(x)x
Step 4.13
Multiply xln(x) by x.
Step 4.13.1
Raise x to the power of 1.
ln(x)(2eln2(x))xln(x)x1
Step 4.13.2
Use the power rule aman=am+n to combine exponents.
ln(x)(2eln2(x))xln(x)+1
ln(x)(2eln2(x))xln(x)+1
Step 4.14
Simplify the numerator.
Step 4.14.1
Rewrite using the commutative property of multiplication.
2ln(x)eln2(x)xln(x)+1
Step 4.14.2
Simplify 2ln(x) by moving 2 inside the logarithm.
ln(x2)eln2(x)xln(x)+1
Step 4.14.3
Reorder factors in ln(x2)eln2(x).
eln2(x)ln(x2)xln(x)+1
eln2(x)ln(x2)xln(x)+1
eln2(x)ln(x2)xln(x)+1
Step 5
Reform the equation by setting the left side equal to the right side.
y′=eln2(x)ln(x2)xln(x)+1
Step 6
Replace y′ with dydx.
dydx=eln2(x)ln(x2)xln(x)+1