Calculus Examples

Solve over the Interval arcsin(x)+arcsin(y)=pi/2 , (( square root of 2)/2,( square root of 2)/2)
arcsin(x)+arcsin(y)=π2arcsin(x)+arcsin(y)=π2 , (22,22)(22,22)
Step 1
Subtract arcsin(y)arcsin(y) from both sides of the equation.
arcsin(x)=π2-arcsin(y)arcsin(x)=π2arcsin(y)
Step 2
Rewrite the equation as π2-arcsin(y)=arcsin(x)π2arcsin(y)=arcsin(x).
π2-arcsin(y)=arcsin(x)π2arcsin(y)=arcsin(x)
Step 3
Subtract π2π2 from both sides of the equation.
-arcsin(y)=arcsin(x)-π2arcsin(y)=arcsin(x)π2
Step 4
Divide each term in -arcsin(y)=arcsin(x)-π2arcsin(y)=arcsin(x)π2 by -11 and simplify.
Tap for more steps...
Step 4.1
Divide each term in -arcsin(y)=arcsin(x)-π2arcsin(y)=arcsin(x)π2 by -11.
-arcsin(y)-1=arcsin(x)-1+-π2-1arcsin(y)1=arcsin(x)1+π21
Step 4.2
Simplify the left side.
Tap for more steps...
Step 4.2.1
Dividing two negative values results in a positive value.
arcsin(y)1=arcsin(x)-1+-π2-1arcsin(y)1=arcsin(x)1+π21
Step 4.2.2
Divide arcsin(y)arcsin(y) by 11.
arcsin(y)=arcsin(x)-1+-π2-1arcsin(y)=arcsin(x)1+π21
arcsin(y)=arcsin(x)-1+-π2-1arcsin(y)=arcsin(x)1+π21
Step 4.3
Simplify the right side.
Tap for more steps...
Step 4.3.1
Simplify each term.
Tap for more steps...
Step 4.3.1.1
Move the negative one from the denominator of arcsin(x)-1arcsin(x)1.
arcsin(y)=-1arcsin(x)+-π2-1arcsin(y)=1arcsin(x)+π21
Step 4.3.1.2
Rewrite -1arcsin(x)1arcsin(x) as -arcsin(x)arcsin(x).
arcsin(y)=-arcsin(x)+-π2-1arcsin(y)=arcsin(x)+π21
Step 4.3.1.3
Dividing two negative values results in a positive value.
arcsin(y)=-arcsin(x)+π21arcsin(y)=arcsin(x)+π21
Step 4.3.1.4
Divide π2π2 by 11.
arcsin(y)=-arcsin(x)+π2arcsin(y)=arcsin(x)+π2
arcsin(y)=-arcsin(x)+π2arcsin(y)=arcsin(x)+π2
arcsin(y)=-arcsin(x)+π2arcsin(y)=arcsin(x)+π2
arcsin(y)=-arcsin(x)+π2arcsin(y)=arcsin(x)+π2
Step 5
Take the inverse arcsine of both sides of the equation to extract xx from inside the arcsine.
y=sin(-arcsin(x)+π2)y=sin(arcsin(x)+π2)
Step 6
Rewrite the equation as sin(-arcsin(x)+π2)=ysin(arcsin(x)+π2)=y.
sin(-arcsin(x)+π2)=ysin(arcsin(x)+π2)=y
Step 7
Take the inverse sine of both sides of the equation to extract arcsin(x)arcsin(x) from inside the sine.
-arcsin(x)+π2=arcsin(y)arcsin(x)+π2=arcsin(y)
Step 8
Subtract π2π2 from both sides of the equation.
-arcsin(x)=arcsin(y)-π2arcsin(x)=arcsin(y)π2
Step 9
Divide each term in -arcsin(x)=arcsin(y)-π2arcsin(x)=arcsin(y)π2 by -11 and simplify.
Tap for more steps...
Step 9.1
Divide each term in -arcsin(x)=arcsin(y)-π2arcsin(x)=arcsin(y)π2 by -11.
-arcsin(x)-1=arcsin(y)-1+-π2-1arcsin(x)1=arcsin(y)1+π21
Step 9.2
Simplify the left side.
Tap for more steps...
Step 9.2.1
Dividing two negative values results in a positive value.
arcsin(x)1=arcsin(y)-1+-π2-1arcsin(x)1=arcsin(y)1+π21
Step 9.2.2
Divide arcsin(x)arcsin(x) by 11.
arcsin(x)=arcsin(y)-1+-π2-1arcsin(x)=arcsin(y)1+π21
arcsin(x)=arcsin(y)-1+-π2-1arcsin(x)=arcsin(y)1+π21
Step 9.3
Simplify the right side.
Tap for more steps...
Step 9.3.1
Simplify each term.
Tap for more steps...
Step 9.3.1.1
Move the negative one from the denominator of arcsin(y)-1arcsin(y)1.
arcsin(x)=-1arcsin(y)+-π2-1arcsin(x)=1arcsin(y)+π21
Step 9.3.1.2
Rewrite -1arcsin(y)1arcsin(y) as -arcsin(y)arcsin(y).
arcsin(x)=-arcsin(y)+-π2-1arcsin(x)=arcsin(y)+π21
Step 9.3.1.3
Dividing two negative values results in a positive value.
arcsin(x)=-arcsin(y)+π21
Step 9.3.1.4
Divide π2 by 1.
arcsin(x)=-arcsin(y)+π2
arcsin(x)=-arcsin(y)+π2
arcsin(x)=-arcsin(y)+π2
arcsin(x)=-arcsin(y)+π2
Step 10
Take the inverse arcsine of both sides of the equation to extract x from inside the arcsine.
x=sin(-arcsin(y)+π2)
Step 11
The equation can not be solved. The given interval accounts for only one variable, but 3 are present in the equation x=sin(-arcsin(y)+π2).
No solution
 [x2  12  π  xdx ]