Enter a problem...
Calculus Examples
arcsin(x)+arcsin(y)=π2arcsin(x)+arcsin(y)=π2 , (√22,√22)(√22,√22)
Step 1
Subtract arcsin(y)arcsin(y) from both sides of the equation.
arcsin(x)=π2-arcsin(y)arcsin(x)=π2−arcsin(y)
Step 2
Rewrite the equation as π2-arcsin(y)=arcsin(x)π2−arcsin(y)=arcsin(x).
π2-arcsin(y)=arcsin(x)π2−arcsin(y)=arcsin(x)
Step 3
Subtract π2π2 from both sides of the equation.
-arcsin(y)=arcsin(x)-π2−arcsin(y)=arcsin(x)−π2
Step 4
Step 4.1
Divide each term in -arcsin(y)=arcsin(x)-π2−arcsin(y)=arcsin(x)−π2 by -1−1.
-arcsin(y)-1=arcsin(x)-1+-π2-1−arcsin(y)−1=arcsin(x)−1+−π2−1
Step 4.2
Simplify the left side.
Step 4.2.1
Dividing two negative values results in a positive value.
arcsin(y)1=arcsin(x)-1+-π2-1arcsin(y)1=arcsin(x)−1+−π2−1
Step 4.2.2
Divide arcsin(y)arcsin(y) by 11.
arcsin(y)=arcsin(x)-1+-π2-1arcsin(y)=arcsin(x)−1+−π2−1
arcsin(y)=arcsin(x)-1+-π2-1arcsin(y)=arcsin(x)−1+−π2−1
Step 4.3
Simplify the right side.
Step 4.3.1
Simplify each term.
Step 4.3.1.1
Move the negative one from the denominator of arcsin(x)-1arcsin(x)−1.
arcsin(y)=-1⋅arcsin(x)+-π2-1arcsin(y)=−1⋅arcsin(x)+−π2−1
Step 4.3.1.2
Rewrite -1⋅arcsin(x)−1⋅arcsin(x) as -arcsin(x)−arcsin(x).
arcsin(y)=-arcsin(x)+-π2-1arcsin(y)=−arcsin(x)+−π2−1
Step 4.3.1.3
Dividing two negative values results in a positive value.
arcsin(y)=-arcsin(x)+π21arcsin(y)=−arcsin(x)+π21
Step 4.3.1.4
Divide π2π2 by 11.
arcsin(y)=-arcsin(x)+π2arcsin(y)=−arcsin(x)+π2
arcsin(y)=-arcsin(x)+π2arcsin(y)=−arcsin(x)+π2
arcsin(y)=-arcsin(x)+π2arcsin(y)=−arcsin(x)+π2
arcsin(y)=-arcsin(x)+π2arcsin(y)=−arcsin(x)+π2
Step 5
Take the inverse arcsine of both sides of the equation to extract xx from inside the arcsine.
y=sin(-arcsin(x)+π2)y=sin(−arcsin(x)+π2)
Step 6
Rewrite the equation as sin(-arcsin(x)+π2)=ysin(−arcsin(x)+π2)=y.
sin(-arcsin(x)+π2)=ysin(−arcsin(x)+π2)=y
Step 7
Take the inverse sine of both sides of the equation to extract arcsin(x)arcsin(x) from inside the sine.
-arcsin(x)+π2=arcsin(y)−arcsin(x)+π2=arcsin(y)
Step 8
Subtract π2π2 from both sides of the equation.
-arcsin(x)=arcsin(y)-π2−arcsin(x)=arcsin(y)−π2
Step 9
Step 9.1
Divide each term in -arcsin(x)=arcsin(y)-π2−arcsin(x)=arcsin(y)−π2 by -1−1.
-arcsin(x)-1=arcsin(y)-1+-π2-1−arcsin(x)−1=arcsin(y)−1+−π2−1
Step 9.2
Simplify the left side.
Step 9.2.1
Dividing two negative values results in a positive value.
arcsin(x)1=arcsin(y)-1+-π2-1arcsin(x)1=arcsin(y)−1+−π2−1
Step 9.2.2
Divide arcsin(x)arcsin(x) by 11.
arcsin(x)=arcsin(y)-1+-π2-1arcsin(x)=arcsin(y)−1+−π2−1
arcsin(x)=arcsin(y)-1+-π2-1arcsin(x)=arcsin(y)−1+−π2−1
Step 9.3
Simplify the right side.
Step 9.3.1
Simplify each term.
Step 9.3.1.1
Move the negative one from the denominator of arcsin(y)-1arcsin(y)−1.
arcsin(x)=-1⋅arcsin(y)+-π2-1arcsin(x)=−1⋅arcsin(y)+−π2−1
Step 9.3.1.2
Rewrite -1⋅arcsin(y)−1⋅arcsin(y) as -arcsin(y)−arcsin(y).
arcsin(x)=-arcsin(y)+-π2-1arcsin(x)=−arcsin(y)+−π2−1
Step 9.3.1.3
Dividing two negative values results in a positive value.
arcsin(x)=-arcsin(y)+π21
Step 9.3.1.4
Divide π2 by 1.
arcsin(x)=-arcsin(y)+π2
arcsin(x)=-arcsin(y)+π2
arcsin(x)=-arcsin(y)+π2
arcsin(x)=-arcsin(y)+π2
Step 10
Take the inverse arcsine of both sides of the equation to extract x from inside the arcsine.
x=sin(-arcsin(y)+π2)
Step 11
The equation can not be solved. The given interval accounts for only one variable, but 3 are present in the equation x=sin(-arcsin(y)+π2).
No solution