Enter a problem...
Calculus Examples
f(x)=ln(x2-2x+5)f(x)=ln(x2−2x+5)
Step 1
Step 1.1
Set the argument of the logarithm equal to zero.
x2-2x+5=0
Step 1.2
Solve for x.
Step 1.2.1
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a
Step 1.2.2
Substitute the values a=1, b=-2, and c=5 into the quadratic formula and solve for x.
2±√(-2)2-4⋅(1⋅5)2⋅1
Step 1.2.3
Simplify.
Step 1.2.3.1
Simplify the numerator.
Step 1.2.3.1.1
Raise -2 to the power of 2.
x=2±√4-4⋅1⋅52⋅1
Step 1.2.3.1.2
Multiply -4⋅1⋅5.
Step 1.2.3.1.2.1
Multiply -4 by 1.
x=2±√4-4⋅52⋅1
Step 1.2.3.1.2.2
Multiply -4 by 5.
x=2±√4-202⋅1
x=2±√4-202⋅1
Step 1.2.3.1.3
Subtract 20 from 4.
x=2±√-162⋅1
Step 1.2.3.1.4
Rewrite -16 as -1(16).
x=2±√-1⋅162⋅1
Step 1.2.3.1.5
Rewrite √-1(16) as √-1⋅√16.
x=2±√-1⋅√162⋅1
Step 1.2.3.1.6
Rewrite √-1 as i.
x=2±i⋅√162⋅1
Step 1.2.3.1.7
Rewrite 16 as 42.
x=2±i⋅√422⋅1
Step 1.2.3.1.8
Pull terms out from under the radical, assuming positive real numbers.
x=2±i⋅42⋅1
Step 1.2.3.1.9
Move 4 to the left of i.
x=2±4i2⋅1
x=2±4i2⋅1
Step 1.2.3.2
Multiply 2 by 1.
x=2±4i2
Step 1.2.3.3
Simplify 2±4i2.
x=1±2i
x=1±2i
Step 1.2.4
Simplify the expression to solve for the + portion of the ±.
Step 1.2.4.1
Simplify the numerator.
Step 1.2.4.1.1
Raise -2 to the power of 2.
x=2±√4-4⋅1⋅52⋅1
Step 1.2.4.1.2
Multiply -4⋅1⋅5.
Step 1.2.4.1.2.1
Multiply -4 by 1.
x=2±√4-4⋅52⋅1
Step 1.2.4.1.2.2
Multiply -4 by 5.
x=2±√4-202⋅1
x=2±√4-202⋅1
Step 1.2.4.1.3
Subtract 20 from 4.
x=2±√-162⋅1
Step 1.2.4.1.4
Rewrite -16 as -1(16).
x=2±√-1⋅162⋅1
Step 1.2.4.1.5
Rewrite √-1(16) as √-1⋅√16.
x=2±√-1⋅√162⋅1
Step 1.2.4.1.6
Rewrite √-1 as i.
x=2±i⋅√162⋅1
Step 1.2.4.1.7
Rewrite 16 as 42.
x=2±i⋅√422⋅1
Step 1.2.4.1.8
Pull terms out from under the radical, assuming positive real numbers.
x=2±i⋅42⋅1
Step 1.2.4.1.9
Move 4 to the left of i.
x=2±4i2⋅1
x=2±4i2⋅1
Step 1.2.4.2
Multiply 2 by 1.
x=2±4i2
Step 1.2.4.3
Simplify 2±4i2.
x=1±2i
Step 1.2.4.4
Change the ± to +.
x=1+2i
x=1+2i
Step 1.2.5
Simplify the expression to solve for the - portion of the ±.
Step 1.2.5.1
Simplify the numerator.
Step 1.2.5.1.1
Raise -2 to the power of 2.
x=2±√4-4⋅1⋅52⋅1
Step 1.2.5.1.2
Multiply -4⋅1⋅5.
Step 1.2.5.1.2.1
Multiply -4 by 1.
x=2±√4-4⋅52⋅1
Step 1.2.5.1.2.2
Multiply -4 by 5.
x=2±√4-202⋅1
x=2±√4-202⋅1
Step 1.2.5.1.3
Subtract 20 from 4.
x=2±√-162⋅1
Step 1.2.5.1.4
Rewrite -16 as -1(16).
x=2±√-1⋅162⋅1
Step 1.2.5.1.5
Rewrite √-1(16) as √-1⋅√16.
x=2±√-1⋅√162⋅1
Step 1.2.5.1.6
Rewrite √-1 as i.
x=2±i⋅√162⋅1
Step 1.2.5.1.7
Rewrite 16 as 42.
x=2±i⋅√422⋅1
Step 1.2.5.1.8
Pull terms out from under the radical, assuming positive real numbers.
x=2±i⋅42⋅1
Step 1.2.5.1.9
Move 4 to the left of i.
x=2±4i2⋅1
x=2±4i2⋅1
Step 1.2.5.2
Multiply 2 by 1.
x=2±4i2
Step 1.2.5.3
Simplify 2±4i2.
x=1±2i
Step 1.2.5.4
Change the ± to -.
x=1-2i
x=1-2i
Step 1.2.6
The final answer is the combination of both solutions.
x=1+2i,1-2i
x=1+2i,1-2i
Step 1.3
The vertical asymptote occurs at x=1+2i,x=1-2i.
Vertical Asymptote: x=1+2i,x=1-2i
Vertical Asymptote: x=1+2i,x=1-2i
Step 2
Step 2.1
Replace the variable x with 1 in the expression.
f(1)=ln((1)2-2⋅1+5)
Step 2.2
Simplify the result.
Step 2.2.1
Simplify each term.
Step 2.2.1.1
One to any power is one.
f(1)=ln(1-2⋅1+5)
Step 2.2.1.2
Multiply -2 by 1.
f(1)=ln(1-2+5)
f(1)=ln(1-2+5)
Step 2.2.2
Simplify by adding and subtracting.
Step 2.2.2.1
Subtract 2 from 1.
f(1)=ln(-1+5)
Step 2.2.2.2
Add -1 and 5.
f(1)=ln(4)
f(1)=ln(4)
Step 2.2.3
The final answer is ln(4).
ln(4)
ln(4)
Step 2.3
Convert ln(4) to decimal.
y=1.38629436
y=1.38629436
Step 3
Step 3.1
Replace the variable x with 2 in the expression.
f(2)=ln((2)2-2⋅2+5)
Step 3.2
Simplify the result.
Step 3.2.1
Simplify each term.
Step 3.2.1.1
Raise 2 to the power of 2.
f(2)=ln(4-2⋅2+5)
Step 3.2.1.2
Multiply -2 by 2.
f(2)=ln(4-4+5)
f(2)=ln(4-4+5)
Step 3.2.2
Simplify by adding and subtracting.
Step 3.2.2.1
Subtract 4 from 4.
f(2)=ln(0+5)
Step 3.2.2.2
Add 0 and 5.
f(2)=ln(5)
f(2)=ln(5)
Step 3.2.3
The final answer is ln(5).
ln(5)
ln(5)
Step 3.3
Convert ln(5) to decimal.
y=1.60943791
y=1.60943791
Step 4
Step 4.1
Replace the variable x with 3 in the expression.
f(3)=ln((3)2-2⋅3+5)
Step 4.2
Simplify the result.
Step 4.2.1
Simplify each term.
Step 4.2.1.1
Raise 3 to the power of 2.
f(3)=ln(9-2⋅3+5)
Step 4.2.1.2
Multiply -2 by 3.
f(3)=ln(9-6+5)
f(3)=ln(9-6+5)
Step 4.2.2
Simplify by adding and subtracting.
Step 4.2.2.1
Subtract 6 from 9.
f(3)=ln(3+5)
Step 4.2.2.2
Add 3 and 5.
f(3)=ln(8)
f(3)=ln(8)
Step 4.2.3
The final answer is ln(8).
ln(8)
ln(8)
Step 4.3
Convert ln(8) to decimal.
y=2.07944154
y=2.07944154
Step 5
The log function can be graphed using the vertical asymptote at x=1+2i,x=1-2i and the points (1,1.38629436),(2,1.60943791),(3,2.07944154).
Vertical Asymptote: x=1+2i,x=1-2i
xy11.38621.60932.079
Step 6