Enter a problem...
Calculus Examples
-4x2-y2+6x+2y-y+16-10x-27+3y+5-3y2+5x2-y2=9-6y2-4y-30+10x+17+y-3y-60−4x2−y2+6x+2y−y+16−10x−27+3y+5−3y2+5x2−y2=9−6y2−4y−30+10x+17+y−3y−60
Step 1
Since yy is on the right side of the equation, switch the sides so it is on the left side of the equation.
9-6y2-4y-30+10x+17+y-3y-60=x2-5y2-4x+4y-69−6y2−4y−30+10x+17+y−3y−60=x2−5y2−4x+4y−6
Step 2
Step 2.1
Subtract x2x2 from both sides of the equation.
9-6y2-4y-30+10x+17+y-3y-60-x2=-5y2-4x+4y-69−6y2−4y−30+10x+17+y−3y−60−x2=−5y2−4x+4y−6
Step 2.2
Add 5y25y2 to both sides of the equation.
9-6y2-4y-30+10x+17+y-3y-60-x2+5y2=-4x+4y-69−6y2−4y−30+10x+17+y−3y−60−x2+5y2=−4x+4y−6
Step 2.3
Add 4x4x to both sides of the equation.
9-6y2-4y-30+10x+17+y-3y-60-x2+5y2+4x=4y-69−6y2−4y−30+10x+17+y−3y−60−x2+5y2+4x=4y−6
Step 2.4
Subtract 4y4y from both sides of the equation.
9-6y2-4y-30+10x+17+y-3y-60-x2+5y2+4x-4y=-69−6y2−4y−30+10x+17+y−3y−60−x2+5y2+4x−4y=−6
Step 2.5
Subtract 3030 from 99.
-6y2-4y-21+10x+17+y-3y-60-x2+5y2+4x-4y=-6−6y2−4y−21+10x+17+y−3y−60−x2+5y2+4x−4y=−6
Step 2.6
Add -6y2−6y2 and 5y25y2.
-y2-4y-21+10x+17+y-3y-60-x2+4x-4y=-6−y2−4y−21+10x+17+y−3y−60−x2+4x−4y=−6
Step 2.7
Add -4y−4y and yy.
-y2-3y-21+10x+17-3y-60-x2+4x-4y=-6−y2−3y−21+10x+17−3y−60−x2+4x−4y=−6
Step 2.8
Subtract 3y3y from -3y−3y.
-y2-6y-21+10x+17-60-x2+4x-4y=-6−y2−6y−21+10x+17−60−x2+4x−4y=−6
Step 2.9
Subtract 4y4y from -6y−6y.
-y2-10y-21+10x+17-60-x2+4x=-6−y2−10y−21+10x+17−60−x2+4x=−6
Step 2.10
Add -21−21 and 1717.
-y2-10y+10x-4-60-x2+4x=-6−y2−10y+10x−4−60−x2+4x=−6
Step 2.11
Add 10x10x and 4x4x.
-y2-10y+14x-4-60-x2=-6−y2−10y+14x−4−60−x2=−6
Step 2.12
Subtract 6060 from -4−4.
-y2-10y+14x-64-x2=-6−y2−10y+14x−64−x2=−6
Step 2.13
Move -64−64.
-y2-10y+14x-x2-64=-6−y2−10y+14x−x2−64=−6
Step 2.14
Move -10y−10y.
-y2+14x-x2-10y-64=-6−y2+14x−x2−10y−64=−6
Step 2.15
Move 14x14x.
-y2-x2+14x-10y-64=-6−y2−x2+14x−10y−64=−6
Step 2.16
Reorder -y2−y2 and -x2−x2.
-x2-y2+14x-10y-64=-6−x2−y2+14x−10y−64=−6
-x2-y2+14x-10y-64=-6−x2−y2+14x−10y−64=−6
Step 3
Step 3.1
Add 64 to both sides of the equation.
-x2-y2+14x-10y=-6+64
Step 3.2
Add -6 and 64.
-x2-y2+14x-10y=58
-x2-y2+14x-10y=58
Step 4
Divide both sides of the equation by -1.
x2+y2-14x+10y=-58
Step 5
Step 5.1
Use the form ax2+bx+c, to find the values of a, b, and c.
a=1
b=-14
c=0
Step 5.2
Consider the vertex form of a parabola.
a(x+d)2+e
Step 5.3
Find the value of d using the formula d=b2a.
Step 5.3.1
Substitute the values of a and b into the formula d=b2a.
d=-142⋅1
Step 5.3.2
Cancel the common factor of -14 and 2.
Step 5.3.2.1
Factor 2 out of -14.
d=2⋅-72⋅1
Step 5.3.2.2
Cancel the common factors.
Step 5.3.2.2.1
Factor 2 out of 2⋅1.
d=2⋅-72(1)
Step 5.3.2.2.2
Cancel the common factor.
d=2⋅-72⋅1
Step 5.3.2.2.3
Rewrite the expression.
d=-71
Step 5.3.2.2.4
Divide -7 by 1.
d=-7
d=-7
d=-7
d=-7
Step 5.4
Find the value of e using the formula e=c-b24a.
Step 5.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=0-(-14)24⋅1
Step 5.4.2
Simplify the right side.
Step 5.4.2.1
Simplify each term.
Step 5.4.2.1.1
Raise -14 to the power of 2.
e=0-1964⋅1
Step 5.4.2.1.2
Multiply 4 by 1.
e=0-1964
Step 5.4.2.1.3
Divide 196 by 4.
e=0-1⋅49
Step 5.4.2.1.4
Multiply -1 by 49.
e=0-49
e=0-49
Step 5.4.2.2
Subtract 49 from 0.
e=-49
e=-49
e=-49
Step 5.5
Substitute the values of a, d, and e into the vertex form (x-7)2-49.
(x-7)2-49
(x-7)2-49
Step 6
Substitute (x-7)2-49 for x2-14x in the equation x2+y2-14x+10y=-58.
(x-7)2-49+y2+10y=-58
Step 7
Move -49 to the right side of the equation by adding 49 to both sides.
(x-7)2+y2+10y=-58+49
Step 8
Step 8.1
Use the form ax2+bx+c, to find the values of a, b, and c.
a=1
b=10
c=0
Step 8.2
Consider the vertex form of a parabola.
a(x+d)2+e
Step 8.3
Find the value of d using the formula d=b2a.
Step 8.3.1
Substitute the values of a and b into the formula d=b2a.
d=102⋅1
Step 8.3.2
Cancel the common factor of 10 and 2.
Step 8.3.2.1
Factor 2 out of 10.
d=2⋅52⋅1
Step 8.3.2.2
Cancel the common factors.
Step 8.3.2.2.1
Factor 2 out of 2⋅1.
d=2⋅52(1)
Step 8.3.2.2.2
Cancel the common factor.
d=2⋅52⋅1
Step 8.3.2.2.3
Rewrite the expression.
d=51
Step 8.3.2.2.4
Divide 5 by 1.
d=5
d=5
d=5
d=5
Step 8.4
Find the value of e using the formula e=c-b24a.
Step 8.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=0-1024⋅1
Step 8.4.2
Simplify the right side.
Step 8.4.2.1
Simplify each term.
Step 8.4.2.1.1
Raise 10 to the power of 2.
e=0-1004⋅1
Step 8.4.2.1.2
Multiply 4 by 1.
e=0-1004
Step 8.4.2.1.3
Divide 100 by 4.
e=0-1⋅25
Step 8.4.2.1.4
Multiply -1 by 25.
e=0-25
e=0-25
Step 8.4.2.2
Subtract 25 from 0.
e=-25
e=-25
e=-25
Step 8.5
Substitute the values of a, d, and e into the vertex form (y+5)2-25.
(y+5)2-25
(y+5)2-25
Step 9
Substitute (y+5)2-25 for y2+10y in the equation x2+y2-14x+10y=-58.
(x-7)2+(y+5)2-25=-58+49
Step 10
Move -25 to the right side of the equation by adding 25 to both sides.
(x-7)2+(y+5)2=-58+49+25
Step 11
Step 11.1
Add -58 and 49.
(x-7)2+(y+5)2=-9+25
Step 11.2
Add -9 and 25.
(x-7)2+(y+5)2=16
(x-7)2+(y+5)2=16
Step 12
This is the form of a circle. Use this form to determine the center and radius of the circle.
(x-h)2+(y-k)2=r2
Step 13
Match the values in this circle to those of the standard form. The variable r represents the radius of the circle, h represents the x-offset from the origin, and k represents the y-offset from origin.
r=4
h=7
k=-5
Step 14
The center of the circle is found at (h,k).
Center: (7,-5)
Step 15
These values represent the important values for graphing and analyzing a circle.
Center: (7,-5)
Radius: 4
Step 16