Enter a problem...
Calculus Examples
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.2
Evaluate .
Step 1.1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.1.2.3
Multiply by .
Step 1.1.3
Evaluate .
Step 1.1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.3.2
Differentiate using the Power Rule which states that is where .
Step 1.1.3.3
Multiply by .
Step 1.1.4
Evaluate .
Step 1.1.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.4.2
Differentiate using the Power Rule which states that is where .
Step 1.1.4.3
Multiply by .
Step 1.1.5
Differentiate using the Constant Rule.
Step 1.1.5.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.5.2
Add and .
Step 1.2
The first derivative of with respect to is .
Step 2
Step 2.1
Set the first derivative equal to .
Step 2.2
Factor the left side of the equation.
Step 2.2.1
Factor out of .
Step 2.2.1.1
Factor out of .
Step 2.2.1.2
Factor out of .
Step 2.2.1.3
Factor out of .
Step 2.2.1.4
Factor out of .
Step 2.2.1.5
Factor out of .
Step 2.2.2
Factor.
Step 2.2.2.1
Factor by grouping.
Step 2.2.2.1.1
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Step 2.2.2.1.1.1
Multiply by .
Step 2.2.2.1.1.2
Rewrite as plus
Step 2.2.2.1.1.3
Apply the distributive property.
Step 2.2.2.1.2
Factor out the greatest common factor from each group.
Step 2.2.2.1.2.1
Group the first two terms and the last two terms.
Step 2.2.2.1.2.2
Factor out the greatest common factor (GCF) from each group.
Step 2.2.2.1.3
Factor the polynomial by factoring out the greatest common factor, .
Step 2.2.2.2
Remove unnecessary parentheses.
Step 2.3
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 2.4
Set equal to and solve for .
Step 2.4.1
Set equal to .
Step 2.4.2
Solve for .
Step 2.4.2.1
Add to both sides of the equation.
Step 2.4.2.2
Divide each term in by and simplify.
Step 2.4.2.2.1
Divide each term in by .
Step 2.4.2.2.2
Simplify the left side.
Step 2.4.2.2.2.1
Cancel the common factor of .
Step 2.4.2.2.2.1.1
Cancel the common factor.
Step 2.4.2.2.2.1.2
Divide by .
Step 2.5
Set equal to and solve for .
Step 2.5.1
Set equal to .
Step 2.5.2
Subtract from both sides of the equation.
Step 2.6
The final solution is all the values that make true.
Step 3
Step 3.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 4
Step 4.1
Evaluate at .
Step 4.1.1
Substitute for .
Step 4.1.2
Simplify.
Step 4.1.2.1
Simplify each term.
Step 4.1.2.1.1
Apply the product rule to .
Step 4.1.2.1.2
One to any power is one.
Step 4.1.2.1.3
Raise to the power of .
Step 4.1.2.1.4
Cancel the common factor of .
Step 4.1.2.1.4.1
Factor out of .
Step 4.1.2.1.4.2
Cancel the common factor.
Step 4.1.2.1.4.3
Rewrite the expression.
Step 4.1.2.1.5
Apply the product rule to .
Step 4.1.2.1.6
One to any power is one.
Step 4.1.2.1.7
Raise to the power of .
Step 4.1.2.1.8
Combine and .
Step 4.1.2.1.9
Cancel the common factor of .
Step 4.1.2.1.9.1
Factor out of .
Step 4.1.2.1.9.2
Cancel the common factor.
Step 4.1.2.1.9.3
Rewrite the expression.
Step 4.1.2.2
Find the common denominator.
Step 4.1.2.2.1
Multiply by .
Step 4.1.2.2.2
Multiply by .
Step 4.1.2.2.3
Write as a fraction with denominator .
Step 4.1.2.2.4
Multiply by .
Step 4.1.2.2.5
Multiply by .
Step 4.1.2.2.6
Write as a fraction with denominator .
Step 4.1.2.2.7
Multiply by .
Step 4.1.2.2.8
Multiply by .
Step 4.1.2.2.9
Multiply by .
Step 4.1.2.3
Combine the numerators over the common denominator.
Step 4.1.2.4
Simplify the expression.
Step 4.1.2.4.1
Multiply by .
Step 4.1.2.4.2
Add and .
Step 4.1.2.4.3
Subtract from .
Step 4.1.2.4.4
Add and .
Step 4.1.2.4.5
Move the negative in front of the fraction.
Step 4.2
Evaluate at .
Step 4.2.1
Substitute for .
Step 4.2.2
Simplify.
Step 4.2.2.1
Simplify each term.
Step 4.2.2.1.1
Raise to the power of .
Step 4.2.2.1.2
Multiply by .
Step 4.2.2.1.3
Raise to the power of .
Step 4.2.2.1.4
Multiply by .
Step 4.2.2.1.5
Multiply by .
Step 4.2.2.2
Simplify by adding numbers.
Step 4.2.2.2.1
Add and .
Step 4.2.2.2.2
Add and .
Step 4.2.2.2.3
Add and .
Step 4.3
List all of the points.
Step 5