Enter a problem...
Calculus Examples
Step 1
Step 1.1
Find the first derivative.
Step 1.1.1
Differentiate using the chain rule, which states that is where and .
Step 1.1.1.1
To apply the Chain Rule, set as .
Step 1.1.1.2
Differentiate using the Power Rule which states that is where .
Step 1.1.1.3
Replace all occurrences of with .
Step 1.1.2
Differentiate.
Step 1.1.2.1
By the Sum Rule, the derivative of with respect to is .
Step 1.1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.1.2.3
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.2.4
Simplify the expression.
Step 1.1.2.4.1
Add and .
Step 1.1.2.4.2
Multiply by .
Step 1.2
The first derivative of with respect to is .
Step 2
Step 2.1
Set the first derivative equal to .
Step 2.2
Rewrite the expression using the negative exponent rule .
Step 2.3
Set the numerator equal to zero.
Step 2.4
Since , there are no solutions.
No solution
No solution
Step 3
Step 3.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 4
There are no values of in the domain of the original problem where the derivative is or undefined.
No critical points found