Enter a problem...
Calculus Examples
Step 1
Step 1.1
Differentiate using the Product Rule which states that is where and .
Step 1.2
Differentiate using the chain rule, which states that is where and .
Step 1.2.1
To apply the Chain Rule, set as .
Step 1.2.2
Differentiate using the Exponential Rule which states that is where =.
Step 1.2.3
Replace all occurrences of with .
Step 1.3
Differentiate.
Step 1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.2
Differentiate using the Power Rule which states that is where .
Step 1.3.3
Simplify the expression.
Step 1.3.3.1
Multiply by .
Step 1.3.3.2
Move to the left of .
Step 1.3.3.3
Rewrite as .
Step 1.3.4
Differentiate using the Power Rule which states that is where .
Step 1.3.5
Multiply by .
Step 1.4
Simplify.
Step 1.4.1
Reorder terms.
Step 1.4.2
Reorder factors in .
Step 2
Step 2.1
Factor out of .
Step 2.1.1
Factor out of .
Step 2.1.2
Multiply by .
Step 2.1.3
Factor out of .
Step 2.2
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 2.3
Set equal to and solve for .
Step 2.3.1
Set equal to .
Step 2.3.2
Solve for .
Step 2.3.2.1
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
Step 2.3.2.2
The equation cannot be solved because is undefined.
Undefined
Step 2.3.2.3
There is no solution for
No solution
No solution
No solution
Step 2.4
Set equal to and solve for .
Step 2.4.1
Set equal to .
Step 2.4.2
Solve for .
Step 2.4.2.1
Subtract from both sides of the equation.
Step 2.4.2.2
Divide each term in by and simplify.
Step 2.4.2.2.1
Divide each term in by .
Step 2.4.2.2.2
Simplify the left side.
Step 2.4.2.2.2.1
Dividing two negative values results in a positive value.
Step 2.4.2.2.2.2
Divide by .
Step 2.4.2.2.3
Simplify the right side.
Step 2.4.2.2.3.1
Divide by .
Step 2.5
The final solution is all the values that make true.
Step 3
Step 3.1
Replace the variable with in the expression.
Step 3.2
Simplify the result.
Step 3.2.1
Multiply by .
Step 3.2.2
Multiply by .
Step 3.2.3
Rewrite the expression using the negative exponent rule .
Step 3.2.4
The final answer is .
Step 4
The horizontal tangent line on function is .
Step 5