Calculus Examples

Find the Horizontal Tangent Line f(x)=xe^(-x)
Step 1
Find the derivative.
Tap for more steps...
Step 1.1
Differentiate using the Product Rule which states that is where and .
Step 1.2
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 1.2.1
To apply the Chain Rule, set as .
Step 1.2.2
Differentiate using the Exponential Rule which states that is where =.
Step 1.2.3
Replace all occurrences of with .
Step 1.3
Differentiate.
Tap for more steps...
Step 1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.2
Differentiate using the Power Rule which states that is where .
Step 1.3.3
Simplify the expression.
Tap for more steps...
Step 1.3.3.1
Multiply by .
Step 1.3.3.2
Move to the left of .
Step 1.3.3.3
Rewrite as .
Step 1.3.4
Differentiate using the Power Rule which states that is where .
Step 1.3.5
Multiply by .
Step 1.4
Simplify.
Tap for more steps...
Step 1.4.1
Reorder terms.
Step 1.4.2
Reorder factors in .
Step 2
Set the derivative equal to then solve the equation .
Tap for more steps...
Step 2.1
Factor out of .
Tap for more steps...
Step 2.1.1
Factor out of .
Step 2.1.2
Multiply by .
Step 2.1.3
Factor out of .
Step 2.2
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 2.3
Set equal to and solve for .
Tap for more steps...
Step 2.3.1
Set equal to .
Step 2.3.2
Solve for .
Tap for more steps...
Step 2.3.2.1
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
Step 2.3.2.2
The equation cannot be solved because is undefined.
Undefined
Step 2.3.2.3
There is no solution for
No solution
No solution
No solution
Step 2.4
Set equal to and solve for .
Tap for more steps...
Step 2.4.1
Set equal to .
Step 2.4.2
Solve for .
Tap for more steps...
Step 2.4.2.1
Subtract from both sides of the equation.
Step 2.4.2.2
Divide each term in by and simplify.
Tap for more steps...
Step 2.4.2.2.1
Divide each term in by .
Step 2.4.2.2.2
Simplify the left side.
Tap for more steps...
Step 2.4.2.2.2.1
Dividing two negative values results in a positive value.
Step 2.4.2.2.2.2
Divide by .
Step 2.4.2.2.3
Simplify the right side.
Tap for more steps...
Step 2.4.2.2.3.1
Divide by .
Step 2.5
The final solution is all the values that make true.
Step 3
Solve the original function at .
Tap for more steps...
Step 3.1
Replace the variable with in the expression.
Step 3.2
Simplify the result.
Tap for more steps...
Step 3.2.1
Multiply by .
Step 3.2.2
Multiply by .
Step 3.2.3
Rewrite the expression using the negative exponent rule .
Step 3.2.4
The final answer is .
Step 4
The horizontal tangent line on function is .
Step 5