Calculus Examples

Find the Horizontal Tangent Line y=5x-x^2
Step 1
Reorder and .
Step 2
Set as a function of .
Step 3
Find the derivative.
Tap for more steps...
Step 3.1
By the Sum Rule, the derivative of with respect to is .
Step 3.2
Evaluate .
Tap for more steps...
Step 3.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.2.2
Differentiate using the Power Rule which states that is where .
Step 3.2.3
Multiply by .
Step 3.3
Evaluate .
Tap for more steps...
Step 3.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.3.2
Differentiate using the Power Rule which states that is where .
Step 3.3.3
Multiply by .
Step 4
Set the derivative equal to then solve the equation .
Tap for more steps...
Step 4.1
Subtract from both sides of the equation.
Step 4.2
Divide each term in by and simplify.
Tap for more steps...
Step 4.2.1
Divide each term in by .
Step 4.2.2
Simplify the left side.
Tap for more steps...
Step 4.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 4.2.2.1.1
Cancel the common factor.
Step 4.2.2.1.2
Divide by .
Step 4.2.3
Simplify the right side.
Tap for more steps...
Step 4.2.3.1
Dividing two negative values results in a positive value.
Step 5
Solve the original function at .
Tap for more steps...
Step 5.1
Replace the variable with in the expression.
Step 5.2
Simplify the result.
Tap for more steps...
Step 5.2.1
Simplify each term.
Tap for more steps...
Step 5.2.1.1
Apply the product rule to .
Step 5.2.1.2
Raise to the power of .
Step 5.2.1.3
Raise to the power of .
Step 5.2.1.4
Multiply .
Tap for more steps...
Step 5.2.1.4.1
Combine and .
Step 5.2.1.4.2
Multiply by .
Step 5.2.2
To write as a fraction with a common denominator, multiply by .
Step 5.2.3
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Tap for more steps...
Step 5.2.3.1
Multiply by .
Step 5.2.3.2
Multiply by .
Step 5.2.4
Combine the numerators over the common denominator.
Step 5.2.5
Simplify the numerator.
Tap for more steps...
Step 5.2.5.1
Multiply by .
Step 5.2.5.2
Add and .
Step 5.2.6
The final answer is .
Step 6
The horizontal tangent line on function is .
Step 7