Calculus Examples

Find the Horizontal Tangent Line y=x^4+2x^2-x
Step 1
Set as a function of .
Step 2
Find the derivative.
Tap for more steps...
Step 2.1
Differentiate.
Tap for more steps...
Step 2.1.1
By the Sum Rule, the derivative of with respect to is .
Step 2.1.2
Differentiate using the Power Rule which states that is where .
Step 2.2
Evaluate .
Tap for more steps...
Step 2.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.2
Differentiate using the Power Rule which states that is where .
Step 2.2.3
Multiply by .
Step 2.3
Evaluate .
Tap for more steps...
Step 2.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.2
Differentiate using the Power Rule which states that is where .
Step 2.3.3
Multiply by .
Step 3
Graph each side of the equation. The solution is the x-value of the point of intersection.
Step 4
Solve the original function at .
Tap for more steps...
Step 4.1
Replace the variable with in the expression.
Step 4.2
Simplify the result.
Tap for more steps...
Step 4.2.1
Simplify each term.
Tap for more steps...
Step 4.2.1.1
Raise to the power of .
Step 4.2.1.2
Raise to the power of .
Step 4.2.1.3
Multiply by .
Step 4.2.1.4
Multiply by .
Step 4.2.2
Simplify by adding and subtracting.
Tap for more steps...
Step 4.2.2.1
Add and .
Step 4.2.2.2
Subtract from .
Step 4.2.3
The final answer is .
Step 5
The horizontal tangent line on function is .
Step 6