Calculus Examples

Find the Absolute Max and Min over the Interval f(x)=3x^(2/3) , [-27,27]
,
Step 1
Find the critical points.
Tap for more steps...
Step 1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1
Find the first derivative.
Tap for more steps...
Step 1.1.1.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.1.2
Differentiate using the Power Rule which states that is where .
Step 1.1.1.3
To write as a fraction with a common denominator, multiply by .
Step 1.1.1.4
Combine and .
Step 1.1.1.5
Combine the numerators over the common denominator.
Step 1.1.1.6
Simplify the numerator.
Tap for more steps...
Step 1.1.1.6.1
Multiply by .
Step 1.1.1.6.2
Subtract from .
Step 1.1.1.7
Move the negative in front of the fraction.
Step 1.1.1.8
Combine and .
Step 1.1.1.9
Combine and .
Step 1.1.1.10
Multiply.
Tap for more steps...
Step 1.1.1.10.1
Multiply by .
Step 1.1.1.10.2
Move to the denominator using the negative exponent rule .
Step 1.1.1.11
Factor out of .
Step 1.1.1.12
Cancel the common factors.
Tap for more steps...
Step 1.1.1.12.1
Factor out of .
Step 1.1.1.12.2
Cancel the common factor.
Step 1.1.1.12.3
Rewrite the expression.
Step 1.1.2
The first derivative of with respect to is .
Step 1.2
Set the first derivative equal to then solve the equation .
Tap for more steps...
Step 1.2.1
Set the first derivative equal to .
Step 1.2.2
Set the numerator equal to zero.
Step 1.2.3
Since , there are no solutions.
No solution
No solution
Step 1.3
Find the values where the derivative is undefined.
Tap for more steps...
Step 1.3.1
Convert expressions with fractional exponents to radicals.
Tap for more steps...
Step 1.3.1.1
Apply the rule to rewrite the exponentiation as a radical.
Step 1.3.1.2
Anything raised to is the base itself.
Step 1.3.2
Set the denominator in equal to to find where the expression is undefined.
Step 1.3.3
Solve for .
Tap for more steps...
Step 1.3.3.1
To remove the radical on the left side of the equation, cube both sides of the equation.
Step 1.3.3.2
Simplify each side of the equation.
Tap for more steps...
Step 1.3.3.2.1
Use to rewrite as .
Step 1.3.3.2.2
Simplify the left side.
Tap for more steps...
Step 1.3.3.2.2.1
Simplify .
Tap for more steps...
Step 1.3.3.2.2.1.1
Multiply the exponents in .
Tap for more steps...
Step 1.3.3.2.2.1.1.1
Apply the power rule and multiply exponents, .
Step 1.3.3.2.2.1.1.2
Cancel the common factor of .
Tap for more steps...
Step 1.3.3.2.2.1.1.2.1
Cancel the common factor.
Step 1.3.3.2.2.1.1.2.2
Rewrite the expression.
Step 1.3.3.2.2.1.2
Simplify.
Step 1.3.3.2.3
Simplify the right side.
Tap for more steps...
Step 1.3.3.2.3.1
Raising to any positive power yields .
Step 1.4
Evaluate at each value where the derivative is or undefined.
Tap for more steps...
Step 1.4.1
Evaluate at .
Tap for more steps...
Step 1.4.1.1
Substitute for .
Step 1.4.1.2
Simplify.
Tap for more steps...
Step 1.4.1.2.1
Simplify the expression.
Tap for more steps...
Step 1.4.1.2.1.1
Rewrite as .
Step 1.4.1.2.1.2
Apply the power rule and multiply exponents, .
Step 1.4.1.2.2
Cancel the common factor of .
Tap for more steps...
Step 1.4.1.2.2.1
Cancel the common factor.
Step 1.4.1.2.2.2
Rewrite the expression.
Step 1.4.1.2.3
Simplify the expression.
Tap for more steps...
Step 1.4.1.2.3.1
Raising to any positive power yields .
Step 1.4.1.2.3.2
Multiply by .
Step 1.4.2
List all of the points.
Step 2
Evaluate at the included endpoints.
Tap for more steps...
Step 2.1
Evaluate at .
Tap for more steps...
Step 2.1.1
Substitute for .
Step 2.1.2
Simplify.
Tap for more steps...
Step 2.1.2.1
Simplify the expression.
Tap for more steps...
Step 2.1.2.1.1
Rewrite as .
Step 2.1.2.1.2
Apply the power rule and multiply exponents, .
Step 2.1.2.2
Cancel the common factor of .
Tap for more steps...
Step 2.1.2.2.1
Cancel the common factor.
Step 2.1.2.2.2
Rewrite the expression.
Step 2.1.2.3
Simplify the expression.
Tap for more steps...
Step 2.1.2.3.1
Raise to the power of .
Step 2.1.2.3.2
Multiply by .
Step 2.2
Evaluate at .
Tap for more steps...
Step 2.2.1
Substitute for .
Step 2.2.2
Simplify.
Tap for more steps...
Step 2.2.2.1
Simplify the expression.
Tap for more steps...
Step 2.2.2.1.1
Rewrite as .
Step 2.2.2.1.2
Apply the power rule and multiply exponents, .
Step 2.2.2.2
Cancel the common factor of .
Tap for more steps...
Step 2.2.2.2.1
Cancel the common factor.
Step 2.2.2.2.2
Rewrite the expression.
Step 2.2.2.3
Simplify the expression.
Tap for more steps...
Step 2.2.2.3.1
Raise to the power of .
Step 2.2.2.3.2
Multiply by .
Step 2.3
List all of the points.
Step 3
Compare the values found for each value of in order to determine the absolute maximum and minimum over the given interval. The maximum will occur at the highest value and the minimum will occur at the lowest value.
Absolute Maximum:
Absolute Minimum:
Step 4