Enter a problem...
Calculus Examples
f(x)=1√xf(x)=1√x
Step 1
Consider the limit definition of the derivative.
f′(x)=limh→0f(x+h)-f(x)h
Step 2
Multiply 1√x by √x√x.
f(x)=1√x⋅√x√x
Step 3
Step 3.1
Multiply 1√x by √x√x.
f(x)=√x√x√x
Step 3.2
Raise √x to the power of 1.
f(x)=√x√x√x
Step 3.3
Raise √x to the power of 1.
f(x)=√x√x√x
Step 3.4
Use the power rule aman=am+n to combine exponents.
f(x)=√x√x1+1
Step 3.5
Add 1 and 1.
f(x)=√x√x2
Step 3.6
Rewrite √x2 as x.
Step 3.6.1
Use n√ax=axn to rewrite √x as x12.
f(x)=√x(x12)2
Step 3.6.2
Apply the power rule and multiply exponents, (am)n=amn.
f(x)=√xx12⋅2
Step 3.6.3
Combine 12 and 2.
f(x)=√xx22
Step 3.6.4
Cancel the common factor of 2.
Step 3.6.4.1
Cancel the common factor.
f(x)=√xx22
Step 3.6.4.2
Rewrite the expression.
f(x)=√xx
f(x)=√xx
Step 3.6.5
Simplify.
f(x)=√xx
f(x)=√xx
f(x)=√xx
Step 4
Step 4.1
Evaluate the function at x=x+h.
Step 4.1.1
Replace the variable x with x+h in the expression.
f(x+h)=√x+hx+h
Step 4.1.2
The final answer is √x+hx+h.
√x+hx+h
√x+hx+h
Step 4.2
Find the components of the definition.
f(x+h)=√x+hx+h
f(x)=√xx
f(x+h)=√x+hx+h
f(x)=√xx
Step 5
Plug in the components.
f′(x)=limh→0√x+hx+h-(√xx)h
Step 6
Step 6.1
Simplify the numerator.
Step 6.1.1
To write √x+hx+h as a fraction with a common denominator, multiply by xx.
f′(x)=limh→0√x+hx+h⋅xx-√xxh
Step 6.1.2
To write -√xx as a fraction with a common denominator, multiply by x+hx+h.
f′(x)=limh→0√x+hx+h⋅xx-√xx⋅x+hx+hh
Step 6.1.3
Write each expression with a common denominator of (x+h)x, by multiplying each by an appropriate factor of 1.
Step 6.1.3.1
Multiply √x+hx+h by xx.
f′(x)=limh→0√x+hx(x+h)x-√xx⋅x+hx+hh
Step 6.1.3.2
Multiply √xx by x+hx+h.
f′(x)=limh→0√x+hx(x+h)x-√x(x+h)x(x+h)h
Step 6.1.3.3
Reorder the factors of (x+h)x.
f′(x)=limh→0√x+hxx(x+h)-√x(x+h)x(x+h)h
f′(x)=limh→0√x+hxx(x+h)-√x(x+h)x(x+h)h
Step 6.1.4
Combine the numerators over the common denominator.
f′(x)=limh→0√x+hx-√x(x+h)x(x+h)h
Step 6.1.5
Rewrite √x+hx-√x(x+h)x(x+h) in a factored form.
Step 6.1.5.1
Use n√ax=axn to rewrite √x+h as (x+h)12.
f′(x)=limh→0(x+h)12x-√x(x+h)x(x+h)h
Step 6.1.5.2
Use n√ax=axn to rewrite √x as x12.
f′(x)=limh→0(x+h)12x-x12(x+h)x(x+h)h
Step 6.1.5.3
Apply the distributive property.
f′(x)=limh→0(x+h)12x-x12x-x12hx(x+h)h
Step 6.1.5.4
Multiply x12 by x by adding the exponents.
Step 6.1.5.4.1
Move x.
f′(x)=limh→0(x+h)12x-(x⋅x12)-x12hx(x+h)h
Step 6.1.5.4.2
Multiply x by x12.
Step 6.1.5.4.2.1
Raise x to the power of 1.
f′(x)=limh→0(x+h)12x-(x⋅x12)-x12hx(x+h)h
Step 6.1.5.4.2.2
Use the power rule aman=am+n to combine exponents.
f′(x)=limh→0(x+h)12x-x1+12-x12hx(x+h)h
f′(x)=limh→0(x+h)12x-x1+12-x12hx(x+h)h
Step 6.1.5.4.3
Write 1 as a fraction with a common denominator.
f′(x)=limh→0(x+h)12x-x22+12-x12hx(x+h)h
Step 6.1.5.4.4
Combine the numerators over the common denominator.
f′(x)=limh→0(x+h)12x-x2+12-x12hx(x+h)h
Step 6.1.5.4.5
Add 2 and 1.
f′(x)=limh→0(x+h)12x-x32-x12hx(x+h)h
f′(x)=limh→0(x+h)12x-x32-x12hx(x+h)h
Step 6.1.5.5
Rewrite (x+h)12x-x32-x12h in a factored form.
Step 6.1.5.5.1
Factor x12 out of (x+h)12x-x32-x12h.
Step 6.1.5.5.1.1
Reorder (x+h)12 and x.
f′(x)=limh→0x(x+h)12-x32-x12hx(x+h)h
Step 6.1.5.5.1.2
Factor x12 out of x(x+h)12.
f′(x)=limh→0x12(x12(x+h)12)-x32-x12hx(x+h)h
Step 6.1.5.5.1.3
Factor x12 out of -x32.
f′(x)=limh→0x12(x12(x+h)12)+x12(-x22)-x12hx(x+h)h
Step 6.1.5.5.1.4
Factor x12 out of -x12h.
f′(x)=limh→0x12(x12(x+h)12)+x12(-x22)+x12(-h)x(x+h)h
Step 6.1.5.5.1.5
Factor x12 out of x12(x12(x+h)12)+x12(-x22).
f′(x)=limh→0x12(x12(x+h)12-x22)+x12(-h)x(x+h)h
Step 6.1.5.5.1.6
Factor x12 out of x12(x12(x+h)12-x22)+x12(-h).
f′(x)=limh→0x12(x12(x+h)12-x22-h)x(x+h)h
f′(x)=limh→0x12(x12(x+h)12-x22-h)x(x+h)h
Step 6.1.5.5.2
Divide 2 by 2.
f′(x)=limh→0x12(x12(x+h)12-x-h)x(x+h)h
Step 6.1.5.5.3
Simplify.
f′(x)=limh→0x12(x12(x+h)12-x-h)x(x+h)h
f′(x)=limh→0x12(x12(x+h)12-x-h)x(x+h)h
Step 6.1.5.6
Reduce the expression x12(x12(x+h)12-x-h)x(x+h) by cancelling the common factors.
Step 6.1.5.6.1
Factor x out of x12(x12(x+h)12-x-h).
f′(x)=limh→0x(x-12(x12(x+h)12-x-h))x(x+h)h
Step 6.1.5.6.2
Cancel the common factor.
f′(x)=limh→0x(x-12(x12(x+h)12-x-h))x(x+h)h
Step 6.1.5.6.3
Rewrite the expression.
f′(x)=limh→0x-12(x12(x+h)12-x-h)x+hh
f′(x)=limh→0x-12(x12(x+h)12-x-h)x+hh
f′(x)=limh→0x-12(x12(x+h)12-x-h)x+hh
Step 6.1.6
Move x-12 to the denominator using the negative exponent rule b-n=1bn.
f′(x)=limh→0x12(x+h)12-x-h(x+h)x12h
f′(x)=limh→0x12(x+h)12-x-h(x+h)x12h
Step 6.2
Multiply the numerator by the reciprocal of the denominator.
f′(x)=limh→0x12(x+h)12-x-h(x+h)x12⋅1h
Step 6.3
Multiply x12(x+h)12-x-h(x+h)x12 by 1h.
f′(x)=limh→0x12(x+h)12-x-h(x+h)x12h
Step 6.4
Reorder factors in x12(x+h)12-x-h(x+h)x12h.
f′(x)=limh→0x12(x+h)12-x-hhx12(x+h)
f′(x)=limh→0x12(x+h)12-x-hhx12(x+h)
Step 7
Step 7.1
Convert fractional exponents to radicals.
Step 7.1.1
Rewrite x12 as √x.
limh→0√x(x+h)12-x-hhx12(x+h)
Step 7.1.2
Rewrite (x+h)12 as √x+h.
limh→0√x√x+h-x-hhx12(x+h)
Step 7.1.3
Rewrite x12 as √x.
limh→0√x√x+h-x-hh√x(x+h)
limh→0√x√x+h-x-hh√x(x+h)
Step 7.2
Combine using the product rule for radicals.
limh→0√x(x+h)-x-hh√x(x+h)
limh→0√x(x+h)-x-hh√x(x+h)
Step 8
Since the numerator is negative and the denominator h√x(x+h) approaches zero and is less than zero for h near 0 on both sides, the function increases without bound.
∞
Step 9