Calculus Examples

Find the Arc Length y=4-x^2 , [-2,2]
y=4-x2y=4x2 , [-2,2][2,2]
Step 1
Check if f(x)=4-x2f(x)=4x2 is continuous.
Tap for more steps...
Step 1.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Interval Notation:
(-,)(,)
Set-Builder Notation:
{x|x}
Step 1.2
f(x) is continuous on [-2,2].
The function is continuous.
The function is continuous.
Step 2
Check if f(x)=4-x2 is differentiable.
Tap for more steps...
Step 2.1
Find the derivative.
Tap for more steps...
Step 2.1.1
Find the first derivative.
Tap for more steps...
Step 2.1.1.1
Differentiate.
Tap for more steps...
Step 2.1.1.1.1
By the Sum Rule, the derivative of 4-x2 with respect to x is ddx[4]+ddx[-x2].
ddx[4]+ddx[-x2]
Step 2.1.1.1.2
Since 4 is constant with respect to x, the derivative of 4 with respect to x is 0.
0+ddx[-x2]
0+ddx[-x2]
Step 2.1.1.2
Evaluate ddx[-x2].
Tap for more steps...
Step 2.1.1.2.1
Since -1 is constant with respect to x, the derivative of -x2 with respect to x is -ddx[x2].
0-ddx[x2]
Step 2.1.1.2.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
0-(2x)
Step 2.1.1.2.3
Multiply 2 by -1.
0-2x
0-2x
Step 2.1.1.3
Subtract 2x from 0.
f(x)=-2x
f(x)=-2x
Step 2.1.2
The first derivative of f(x) with respect to x is -2x.
-2x
-2x
Step 2.2
Find if the derivative is continuous on [-2,2].
Tap for more steps...
Step 2.2.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Interval Notation:
(-,)
Set-Builder Notation:
{x|x}
Step 2.2.2
f(x) is continuous on [-2,2].
The function is continuous.
The function is continuous.
Step 2.3
The function is differentiable on [-2,2] because the derivative is continuous on [-2,2].
The function is differentiable.
The function is differentiable.
Step 3
For arc length to be guaranteed, the function and its derivative must both be continuous on the closed interval [-2,2].
The function and its derivative are continuous on the closed interval [-2,2].
Step 4
Find the derivative of f(x)=4-x2.
Tap for more steps...
Step 4.1
Differentiate.
Tap for more steps...
Step 4.1.1
By the Sum Rule, the derivative of 4-x2 with respect to x is ddx[4]+ddx[-x2].
ddx[4]+ddx[-x2]
Step 4.1.2
Since 4 is constant with respect to x, the derivative of 4 with respect to x is 0.
0+ddx[-x2]
0+ddx[-x2]
Step 4.2
Evaluate ddx[-x2].
Tap for more steps...
Step 4.2.1
Since -1 is constant with respect to x, the derivative of -x2 with respect to x is -ddx[x2].
0-ddx[x2]
Step 4.2.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
0-(2x)
Step 4.2.3
Multiply 2 by -1.
0-2x
0-2x
Step 4.3
Subtract 2x from 0.
-2x
-2x
Step 5
To find the arc length of a function, use the formula L=ba1+(f(x))2dx.
2-21+(-2x)2dx
Step 6
Evaluate the integral.
Tap for more steps...
Step 6.1
Let x=12tan(t), where -π2tπ2. Then dx=sec2(t)2dt. Note that since -π2tπ2, sec2(t)2 is positive.
1.32581766-1.325817661+4(12tan(t))2sec2(t)2dt
Step 6.2
Simplify terms.
Tap for more steps...
Step 6.2.1
Simplify 1+4(12tan(t))2.
Tap for more steps...
Step 6.2.1.1
Simplify each term.
Tap for more steps...
Step 6.2.1.1.1
Combine 12 and tan(t).
1.32581766-1.325817661+4(tan(t)2)2sec2(t)2dt
Step 6.2.1.1.2
Apply the product rule to tan(t)2.
1.32581766-1.325817661+4tan2(t)22sec2(t)2dt
Step 6.2.1.1.3
Raise 2 to the power of 2.
1.32581766-1.325817661+4tan2(t)4sec2(t)2dt
Step 6.2.1.1.4
Cancel the common factor of 4.
Tap for more steps...
Step 6.2.1.1.4.1
Cancel the common factor.
1.32581766-1.325817661+4tan2(t)4sec2(t)2dt
Step 6.2.1.1.4.2
Rewrite the expression.
1.32581766-1.325817661+tan2(t)sec2(t)2dt
1.32581766-1.325817661+tan2(t)sec2(t)2dt
1.32581766-1.325817661+tan2(t)sec2(t)2dt
Step 6.2.1.2
Rearrange terms.
1.32581766-1.32581766tan2(t)+1sec2(t)2dt
Step 6.2.1.3
Apply pythagorean identity.
1.32581766-1.32581766sec2(t)sec2(t)2dt
Step 6.2.1.4
Pull terms out from under the radical, assuming positive real numbers.
1.32581766-1.32581766sec(t)sec2(t)2dt
1.32581766-1.32581766sec(t)sec2(t)2dt
Step 6.2.2
Simplify.
Tap for more steps...
Step 6.2.2.1
Combine sec(t) and sec2(t)2.
1.32581766-1.32581766sec(t)sec2(t)2dt
Step 6.2.2.2
Multiply sec(t) by sec2(t) by adding the exponents.
Tap for more steps...
Step 6.2.2.2.1
Multiply sec(t) by sec2(t).
Tap for more steps...
Step 6.2.2.2.1.1
Raise sec(t) to the power of 1.
1.32581766-1.32581766sec1(t)sec2(t)2dt
Step 6.2.2.2.1.2
Use the power rule aman=am+n to combine exponents.
1.32581766-1.32581766sec(t)1+22dt
1.32581766-1.32581766sec(t)1+22dt
Step 6.2.2.2.2
Add 1 and 2.
1.32581766-1.32581766sec3(t)2dt
1.32581766-1.32581766sec3(t)2dt
1.32581766-1.32581766sec3(t)2dt
1.32581766-1.32581766sec3(t)2dt
Step 6.3
Since 12 is constant with respect to t, move 12 out of the integral.
121.32581766-1.32581766sec3(t)dt
Step 6.4
Apply the reduction formula.
12(tan(t)sec(t)2]1.32581766-1.32581766+121.32581766-1.32581766sec(t)dt)
Step 6.5
The integral of sec(t) with respect to t is ln(|sec(t)+tan(t)|).
12(tan(t)sec(t)2]1.32581766-1.32581766+12ln(|sec(t)+tan(t)|)]1.32581766-1.32581766)
Step 6.6
Simplify.
Tap for more steps...
Step 6.6.1
Combine 12 and ln(|sec(t)+tan(t)|)]1.32581766-1.32581766.
12(tan(t)sec(t)2]1.32581766-1.32581766+ln(|sec(t)+tan(t)|)]1.32581766-1.325817662)
Step 6.6.2
To write tan(t)sec(t)2]1.32581766-1.32581766 as a fraction with a common denominator, multiply by 22.
12(tan(t)sec(t)2]1.32581766-1.3258176622+ln(|sec(t)+tan(t)|)]1.32581766-1.325817662)
Step 6.6.3
Combine tan(t)sec(t)2]1.32581766-1.32581766 and 22.
12(tan(t)sec(t)2]1.32581766-1.3258176622+ln(|sec(t)+tan(t)|)]1.32581766-1.325817662)
Step 6.6.4
Combine the numerators over the common denominator.
12tan(t)sec(t)2]1.32581766-1.325817662+ln(|sec(t)+tan(t)|)]1.32581766-1.325817662
Step 6.6.5
Move 2 to the left of tan(t)sec(t)2]1.32581766-1.32581766.
122(tan(t)sec(t)2]1.32581766-1.32581766)+ln(|sec(t)+tan(t)|)]1.32581766-1.325817662
Step 6.6.6
Multiply 12 by 2(tan(t)sec(t)2]1.32581766-1.32581766)+ln(|sec(t)+tan(t)|)]1.32581766-1.325817662.
2(tan(t)sec(t)2]1.32581766-1.32581766)+ln(|sec(t)+tan(t)|)]1.32581766-1.3258176622
Step 6.6.7
Multiply 2 by 2.
2(tan(t)sec(t)2]1.32581766-1.32581766)+ln(|sec(t)+tan(t)|)]1.32581766-1.325817664
2(tan(t)sec(t)2]1.32581766-1.32581766)+ln(|sec(t)+tan(t)|)]1.32581766-1.325817664
Step 6.7
Substitute and simplify.
Tap for more steps...
Step 6.7.1
Evaluate tan(t)sec(t)2 at 1.32581766 and at -1.32581766.
2((tan(1.32581766)sec(1.32581766)2)-tan(-1.32581766)sec(-1.32581766)2)+ln(|sec(t)+tan(t)|)]1.32581766-1.325817664
Step 6.7.2
Evaluate ln(|sec(t)+tan(t)|) at 1.32581766 and at -1.32581766.
2((tan(1.32581766)sec(1.32581766)2)-tan(-1.32581766)sec(-1.32581766)2)+(ln(|sec(1.32581766)+tan(1.32581766)|))-ln(|sec(-1.32581766)+tan(-1.32581766)|)4
Step 6.7.3
Remove unnecessary parentheses.
2(tan(1.32581766)sec(1.32581766)2-tan(-1.32581766)sec(-1.32581766)2)+ln(|sec(1.32581766)+tan(1.32581766)|)-ln(|sec(-1.32581766)+tan(-1.32581766)|)4
2(tan(1.32581766)sec(1.32581766)2-tan(-1.32581766)sec(-1.32581766)2)+ln(|sec(1.32581766)+tan(1.32581766)|)-ln(|sec(-1.32581766)+tan(-1.32581766)|)4
Step 6.8
Use the quotient property of logarithms, logb(x)-logb(y)=logb(xy).
2(tan(1.32581766)sec(1.32581766)2-tan(-1.32581766)sec(-1.32581766)2)+ln(|sec(1.32581766)+tan(1.32581766)||sec(-1.32581766)+tan(-1.32581766)|)4
Step 6.9
Simplify.
Tap for more steps...
Step 6.9.1
Simplify the numerator.
Tap for more steps...
Step 6.9.1.1
Evaluate tan(-1.32581766).
2(tan(1.32581766)sec(1.32581766)2--4sec(-1.32581766)2)+ln(|sec(1.32581766)+tan(1.32581766)||sec(-1.32581766)+tan(-1.32581766)|)4
Step 6.9.1.2
Evaluate sec(-1.32581766).
2(tan(1.32581766)sec(1.32581766)2--44.123105622)+ln(|sec(1.32581766)+tan(1.32581766)||sec(-1.32581766)+tan(-1.32581766)|)4
2(tan(1.32581766)sec(1.32581766)2--44.123105622)+ln(|sec(1.32581766)+tan(1.32581766)||sec(-1.32581766)+tan(-1.32581766)|)4
Step 6.9.2
Multiply -4 by 4.12310562.
2(tan(1.32581766)sec(1.32581766)2--16.49242252)+ln(|sec(1.32581766)+tan(1.32581766)||sec(-1.32581766)+tan(-1.32581766)|)4
Step 6.9.3
Divide -16.4924225 by 2.
2(tan(1.32581766)sec(1.32581766)2--8.24621125)+ln(|sec(1.32581766)+tan(1.32581766)||sec(-1.32581766)+tan(-1.32581766)|)4
Step 6.9.4
Multiply -1 by -8.24621125.
2(tan(1.32581766)sec(1.32581766)2+8.24621125)+ln(|sec(1.32581766)+tan(1.32581766)||sec(-1.32581766)+tan(-1.32581766)|)4
Step 6.9.5
Simplify each term.
Tap for more steps...
Step 6.9.5.1
Simplify the numerator.
Tap for more steps...
Step 6.9.5.1.1
Evaluate tan(1.32581766).
2(4sec(1.32581766)2+8.24621125)+ln(|sec(1.32581766)+tan(1.32581766)||sec(-1.32581766)+tan(-1.32581766)|)4
Step 6.9.5.1.2
Evaluate sec(1.32581766).
2(44.123105622+8.24621125)+ln(|sec(1.32581766)+tan(1.32581766)||sec(-1.32581766)+tan(-1.32581766)|)4
2(44.123105622+8.24621125)+ln(|sec(1.32581766)+tan(1.32581766)||sec(-1.32581766)+tan(-1.32581766)|)4
Step 6.9.5.2
Multiply 4 by 4.12310562.
2(16.49242252+8.24621125)+ln(|sec(1.32581766)+tan(1.32581766)||sec(-1.32581766)+tan(-1.32581766)|)4
Step 6.9.5.3
Divide 16.4924225 by 2.
2(8.24621125+8.24621125)+ln(|sec(1.32581766)+tan(1.32581766)||sec(-1.32581766)+tan(-1.32581766)|)4
2(8.24621125+8.24621125)+ln(|sec(1.32581766)+tan(1.32581766)||sec(-1.32581766)+tan(-1.32581766)|)4
Step 6.9.6
Add 8.24621125 and 8.24621125.
216.4924225+ln(|sec(1.32581766)+tan(1.32581766)||sec(-1.32581766)+tan(-1.32581766)|)4
Step 6.9.7
Multiply 2 by 16.4924225.
32.984845+ln(|sec(1.32581766)+tan(1.32581766)||sec(-1.32581766)+tan(-1.32581766)|)4
Step 6.9.8
sec(1.32581766)+tan(1.32581766) is approximately 8.12310562 which is positive so remove the absolute value
32.984845+ln(sec(1.32581766)+tan(1.32581766)|sec(-1.32581766)+tan(-1.32581766)|)4
Step 6.9.9
sec(-1.32581766)+tan(-1.32581766) is approximately 0.12310562 which is positive so remove the absolute value
32.984845+ln(sec(1.32581766)+tan(1.32581766)sec(-1.32581766)+tan(-1.32581766))4
32.984845+ln(sec(1.32581766)+tan(1.32581766)sec(-1.32581766)+tan(-1.32581766))4
32.984845+ln(sec(1.32581766)+tan(1.32581766)sec(-1.32581766)+tan(-1.32581766))4
Step 7
The result can be shown in multiple forms.
Exact Form:
32.984845+ln(sec(1.32581766)+tan(1.32581766)sec(-1.32581766)+tan(-1.32581766))4
Decimal Form:
9.29356752
Step 8
 [x2  12  π  xdx ]