Enter a problem...
Calculus Examples
Step 1
Move to the left of .
Step 2
Since is constant with respect to , move out of the integral.
Step 3
Step 3.1
Let . Find .
Step 3.1.1
Differentiate .
Step 3.1.2
By the Sum Rule, the derivative of with respect to is .
Step 3.1.3
Differentiate using the Power Rule which states that is where .
Step 3.1.4
Since is constant with respect to , the derivative of with respect to is .
Step 3.1.5
Add and .
Step 3.2
Substitute the lower limit in for in .
Step 3.3
Simplify.
Step 3.3.1
Raising to any positive power yields .
Step 3.3.2
Add and .
Step 3.4
Substitute the upper limit in for in .
Step 3.5
Simplify.
Step 3.5.1
One to any power is one.
Step 3.5.2
Add and .
Step 3.6
The values found for and will be used to evaluate the definite integral.
Step 3.7
Rewrite the problem using , , and the new limits of integration.
Step 4
Combine and .
Step 5
Since is constant with respect to , move out of the integral.
Step 6
Step 6.1
Combine and .
Step 6.2
Cancel the common factor of .
Step 6.2.1
Cancel the common factor.
Step 6.2.2
Rewrite the expression.
Step 6.3
Multiply by .
Step 7
By the Power Rule, the integral of with respect to is .
Step 8
Step 8.1
Evaluate at and at .
Step 8.2
Simplify.
Step 8.2.1
Raise to the power of .
Step 8.2.2
Combine and .
Step 8.2.3
One to any power is one.
Step 8.2.4
Multiply by .
Step 8.2.5
Combine the numerators over the common denominator.
Step 8.2.6
Subtract from .
Step 9
The result can be shown in multiple forms.
Exact Form:
Decimal Form:
Mixed Number Form:
Step 10