Enter a problem...
Calculus Examples
Step 1
Integrate by parts using the formula , where and .
Step 2
Combine and .
Step 3
Since is constant with respect to , move out of the integral.
Step 4
Step 4.1
Multiply by .
Step 4.2
Multiply by .
Step 5
Step 5.1
Let . Find .
Step 5.1.1
Differentiate .
Step 5.1.2
By the Sum Rule, the derivative of with respect to is .
Step 5.1.3
Since is constant with respect to , the derivative of with respect to is .
Step 5.1.4
Differentiate using the Power Rule which states that is where .
Step 5.1.5
Add and .
Step 5.2
Rewrite the problem using and .
Step 6
Step 6.1
Multiply by .
Step 6.2
Move to the left of .
Step 7
Since is constant with respect to , move out of the integral.
Step 8
The integral of with respect to is .
Step 9
Simplify.
Step 10
Replace all occurrences of with .