Enter a problem...
Calculus Examples
Step 1
Step 1.1
Let . Find .
Step 1.1.1
Differentiate .
Step 1.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.3
Differentiate using the Power Rule which states that is where .
Step 1.1.4
Multiply by .
Step 1.2
Rewrite the problem using and .
Step 2
Step 2.1
Combine and .
Step 2.2
Combine and .
Step 3
Since is constant with respect to , move out of the integral.
Step 4
Step 4.1
Rewrite as plus
Step 4.2
Rewrite as .
Step 5
Using the Pythagorean Identity, rewrite as .
Step 6
Step 6.1
Let . Find .
Step 6.1.1
Differentiate .
Step 6.1.2
The derivative of with respect to is .
Step 6.2
Rewrite the problem using and .
Step 7
Multiply .
Step 8
Step 8.1
Multiply by .
Step 8.2
Multiply by by adding the exponents.
Step 8.2.1
Use the power rule to combine exponents.
Step 8.2.2
Add and .
Step 9
Split the single integral into multiple integrals.
Step 10
By the Power Rule, the integral of with respect to is .
Step 11
By the Power Rule, the integral of with respect to is .
Step 12
Simplify.
Step 13
Step 13.1
Replace all occurrences of with .
Step 13.2
Replace all occurrences of with .