Calculus Examples

Find the 2nd Derivative f(x)=2x^2cos(6x)
Step 1
Find the first derivative.
Tap for more steps...
Step 1.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.2
Differentiate using the Product Rule which states that is where and .
Step 1.3
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 1.3.1
To apply the Chain Rule, set as .
Step 1.3.2
The derivative of with respect to is .
Step 1.3.3
Replace all occurrences of with .
Step 1.4
Differentiate.
Tap for more steps...
Step 1.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.4.2
Multiply by .
Step 1.4.3
Differentiate using the Power Rule which states that is where .
Step 1.4.4
Multiply by .
Step 1.4.5
Differentiate using the Power Rule which states that is where .
Step 1.5
Simplify.
Tap for more steps...
Step 1.5.1
Apply the distributive property.
Step 1.5.2
Combine terms.
Tap for more steps...
Step 1.5.2.1
Multiply by .
Step 1.5.2.2
Multiply by .
Step 1.5.3
Reorder terms.
Step 2
Find the second derivative.
Tap for more steps...
Step 2.1
By the Sum Rule, the derivative of with respect to is .
Step 2.2
Evaluate .
Tap for more steps...
Step 2.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.2
Differentiate using the Product Rule which states that is where and .
Step 2.2.3
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 2.2.3.1
To apply the Chain Rule, set as .
Step 2.2.3.2
The derivative of with respect to is .
Step 2.2.3.3
Replace all occurrences of with .
Step 2.2.4
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.5
Differentiate using the Power Rule which states that is where .
Step 2.2.6
Differentiate using the Power Rule which states that is where .
Step 2.2.7
Multiply by .
Step 2.2.8
Move to the left of .
Step 2.3
Evaluate .
Tap for more steps...
Step 2.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.2
Differentiate using the Product Rule which states that is where and .
Step 2.3.3
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 2.3.3.1
To apply the Chain Rule, set as .
Step 2.3.3.2
The derivative of with respect to is .
Step 2.3.3.3
Replace all occurrences of with .
Step 2.3.4
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.5
Differentiate using the Power Rule which states that is where .
Step 2.3.6
Differentiate using the Power Rule which states that is where .
Step 2.3.7
Multiply by .
Step 2.3.8
Multiply by .
Step 2.3.9
Multiply by .
Step 2.4
Simplify.
Tap for more steps...
Step 2.4.1
Apply the distributive property.
Step 2.4.2
Apply the distributive property.
Step 2.4.3
Combine terms.
Tap for more steps...
Step 2.4.3.1
Multiply by .
Step 2.4.3.2
Multiply by .
Step 2.4.3.3
Multiply by .
Step 2.4.3.4
Subtract from .
Tap for more steps...
Step 2.4.3.4.1
Move .
Step 2.4.3.4.2
Subtract from .
Step 3
Find the third derivative.
Tap for more steps...
Step 3.1
By the Sum Rule, the derivative of with respect to is .
Step 3.2
Evaluate .
Tap for more steps...
Step 3.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.2.2
Differentiate using the Product Rule which states that is where and .
Step 3.2.3
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 3.2.3.1
To apply the Chain Rule, set as .
Step 3.2.3.2
The derivative of with respect to is .
Step 3.2.3.3
Replace all occurrences of with .
Step 3.2.4
Since is constant with respect to , the derivative of with respect to is .
Step 3.2.5
Differentiate using the Power Rule which states that is where .
Step 3.2.6
Differentiate using the Power Rule which states that is where .
Step 3.2.7
Multiply by .
Step 3.2.8
Multiply by .
Step 3.3
Evaluate .
Tap for more steps...
Step 3.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.3.2
Differentiate using the Product Rule which states that is where and .
Step 3.3.3
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 3.3.3.1
To apply the Chain Rule, set as .
Step 3.3.3.2
The derivative of with respect to is .
Step 3.3.3.3
Replace all occurrences of with .
Step 3.3.4
Since is constant with respect to , the derivative of with respect to is .
Step 3.3.5
Differentiate using the Power Rule which states that is where .
Step 3.3.6
Differentiate using the Power Rule which states that is where .
Step 3.3.7
Multiply by .
Step 3.3.8
Move to the left of .
Step 3.3.9
Multiply by .
Step 3.4
Evaluate .
Tap for more steps...
Step 3.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.4.2
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 3.4.2.1
To apply the Chain Rule, set as .
Step 3.4.2.2
The derivative of with respect to is .
Step 3.4.2.3
Replace all occurrences of with .
Step 3.4.3
Since is constant with respect to , the derivative of with respect to is .
Step 3.4.4
Differentiate using the Power Rule which states that is where .
Step 3.4.5
Multiply by .
Step 3.4.6
Multiply by .
Step 3.4.7
Multiply by .
Step 3.5
Simplify.
Tap for more steps...
Step 3.5.1
Apply the distributive property.
Step 3.5.2
Apply the distributive property.
Step 3.5.3
Combine terms.
Tap for more steps...
Step 3.5.3.1
Multiply by .
Step 3.5.3.2
Multiply by .
Step 3.5.3.3
Multiply by .
Step 3.5.3.4
Subtract from .
Tap for more steps...
Step 3.5.3.4.1
Move .
Step 3.5.3.4.2
Subtract from .
Step 3.5.3.5
Subtract from .
Step 4
Find the fourth derivative.
Tap for more steps...
Step 4.1
By the Sum Rule, the derivative of with respect to is .
Step 4.2
Evaluate .
Tap for more steps...
Step 4.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 4.2.2
Differentiate using the Product Rule which states that is where and .
Step 4.2.3
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 4.2.3.1
To apply the Chain Rule, set as .
Step 4.2.3.2
The derivative of with respect to is .
Step 4.2.3.3
Replace all occurrences of with .
Step 4.2.4
Since is constant with respect to , the derivative of with respect to is .
Step 4.2.5
Differentiate using the Power Rule which states that is where .
Step 4.2.6
Differentiate using the Power Rule which states that is where .
Step 4.2.7
Multiply by .
Step 4.2.8
Move to the left of .
Step 4.3
Evaluate .
Tap for more steps...
Step 4.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 4.3.2
Differentiate using the Product Rule which states that is where and .
Step 4.3.3
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 4.3.3.1
To apply the Chain Rule, set as .
Step 4.3.3.2
The derivative of with respect to is .
Step 4.3.3.3
Replace all occurrences of with .
Step 4.3.4
Since is constant with respect to , the derivative of with respect to is .
Step 4.3.5
Differentiate using the Power Rule which states that is where .
Step 4.3.6
Differentiate using the Power Rule which states that is where .
Step 4.3.7
Multiply by .
Step 4.3.8
Multiply by .
Step 4.3.9
Multiply by .
Step 4.4
Evaluate .
Tap for more steps...
Step 4.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 4.4.2
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 4.4.2.1
To apply the Chain Rule, set as .
Step 4.4.2.2
The derivative of with respect to is .
Step 4.4.2.3
Replace all occurrences of with .
Step 4.4.3
Since is constant with respect to , the derivative of with respect to is .
Step 4.4.4
Differentiate using the Power Rule which states that is where .
Step 4.4.5
Multiply by .
Step 4.4.6
Move to the left of .
Step 4.4.7
Multiply by .
Step 4.5
Simplify.
Tap for more steps...
Step 4.5.1
Apply the distributive property.
Step 4.5.2
Apply the distributive property.
Step 4.5.3
Combine terms.
Tap for more steps...
Step 4.5.3.1
Multiply by .
Step 4.5.3.2
Multiply by .
Step 4.5.3.3
Multiply by .
Step 4.5.3.4
Add and .
Tap for more steps...
Step 4.5.3.4.1
Move .
Step 4.5.3.4.2
Add and .
Step 4.5.3.5
Subtract from .
Step 5
The fourth derivative of with respect to is .