Enter a problem...
Calculus Examples
Step 1
Step 1.1
Differentiate using the chain rule, which states that is where and .
Step 1.1.1
To apply the Chain Rule, set as .
Step 1.1.2
Differentiate using the Power Rule which states that is where .
Step 1.1.3
Replace all occurrences of with .
Step 1.2
Differentiate.
Step 1.2.1
By the Sum Rule, the derivative of with respect to is .
Step 1.2.2
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.3
Differentiate using the Power Rule which states that is where .
Step 1.2.4
Multiply by .
Step 1.2.5
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.6
Simplify the expression.
Step 1.2.6.1
Add and .
Step 1.2.6.2
Multiply by .
Step 2
Step 2.1
Rewrite as .
Step 2.2
Expand using the FOIL Method.
Step 2.2.1
Apply the distributive property.
Step 2.2.2
Apply the distributive property.
Step 2.2.3
Apply the distributive property.
Step 2.3
Simplify and combine like terms.
Step 2.3.1
Simplify each term.
Step 2.3.1.1
Rewrite using the commutative property of multiplication.
Step 2.3.1.2
Multiply by by adding the exponents.
Step 2.3.1.2.1
Move .
Step 2.3.1.2.2
Multiply by .
Step 2.3.1.3
Multiply by .
Step 2.3.1.4
Multiply by .
Step 2.3.1.5
Multiply by .
Step 2.3.1.6
Multiply by .
Step 2.3.2
Add and .
Step 2.4
Since is constant with respect to , the derivative of with respect to is .
Step 2.5
By the Sum Rule, the derivative of with respect to is .
Step 2.6
Since is constant with respect to , the derivative of with respect to is .
Step 2.7
Differentiate using the Power Rule which states that is where .
Step 2.8
Multiply by .
Step 2.9
Since is constant with respect to , the derivative of with respect to is .
Step 2.10
Differentiate using the Power Rule which states that is where .
Step 2.11
Multiply by .
Step 2.12
Since is constant with respect to , the derivative of with respect to is .
Step 2.13
Add and .
Step 2.14
Simplify.
Step 2.14.1
Apply the distributive property.
Step 2.14.2
Combine terms.
Step 2.14.2.1
Multiply by .
Step 2.14.2.2
Multiply by .
Step 3
Step 3.1
By the Sum Rule, the derivative of with respect to is .
Step 3.2
Evaluate .
Step 3.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.2.2
Differentiate using the Power Rule which states that is where .
Step 3.2.3
Multiply by .
Step 3.3
Differentiate using the Constant Rule.
Step 3.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.3.2
Add and .
Step 4
Since is constant with respect to , the derivative of with respect to is .
Step 5
The fourth derivative of with respect to is .