Calculus Examples

Find the 2nd Derivative f(x)=(8x+9)^4
Step 1
Find the first derivative.
Tap for more steps...
Step 1.1
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 1.1.1
To apply the Chain Rule, set as .
Step 1.1.2
Differentiate using the Power Rule which states that is where .
Step 1.1.3
Replace all occurrences of with .
Step 1.2
Differentiate.
Tap for more steps...
Step 1.2.1
By the Sum Rule, the derivative of with respect to is .
Step 1.2.2
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.3
Differentiate using the Power Rule which states that is where .
Step 1.2.4
Multiply by .
Step 1.2.5
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.6
Simplify the expression.
Tap for more steps...
Step 1.2.6.1
Add and .
Step 1.2.6.2
Multiply by .
Step 2
Find the second derivative.
Tap for more steps...
Step 2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 2.2.1
To apply the Chain Rule, set as .
Step 2.2.2
Differentiate using the Power Rule which states that is where .
Step 2.2.3
Replace all occurrences of with .
Step 2.3
Differentiate.
Tap for more steps...
Step 2.3.1
Multiply by .
Step 2.3.2
By the Sum Rule, the derivative of with respect to is .
Step 2.3.3
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.4
Differentiate using the Power Rule which states that is where .
Step 2.3.5
Multiply by .
Step 2.3.6
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.7
Simplify the expression.
Tap for more steps...
Step 2.3.7.1
Add and .
Step 2.3.7.2
Multiply by .
Step 3
Find the third derivative.
Tap for more steps...
Step 3.1
Rewrite as .
Step 3.2
Expand using the FOIL Method.
Tap for more steps...
Step 3.2.1
Apply the distributive property.
Step 3.2.2
Apply the distributive property.
Step 3.2.3
Apply the distributive property.
Step 3.3
Simplify and combine like terms.
Tap for more steps...
Step 3.3.1
Simplify each term.
Tap for more steps...
Step 3.3.1.1
Rewrite using the commutative property of multiplication.
Step 3.3.1.2
Multiply by by adding the exponents.
Tap for more steps...
Step 3.3.1.2.1
Move .
Step 3.3.1.2.2
Multiply by .
Step 3.3.1.3
Multiply by .
Step 3.3.1.4
Multiply by .
Step 3.3.1.5
Multiply by .
Step 3.3.1.6
Multiply by .
Step 3.3.2
Add and .
Step 3.4
Since is constant with respect to , the derivative of with respect to is .
Step 3.5
By the Sum Rule, the derivative of with respect to is .
Step 3.6
Since is constant with respect to , the derivative of with respect to is .
Step 3.7
Differentiate using the Power Rule which states that is where .
Step 3.8
Multiply by .
Step 3.9
Since is constant with respect to , the derivative of with respect to is .
Step 3.10
Differentiate using the Power Rule which states that is where .
Step 3.11
Multiply by .
Step 3.12
Since is constant with respect to , the derivative of with respect to is .
Step 3.13
Add and .
Step 3.14
Simplify.
Tap for more steps...
Step 3.14.1
Apply the distributive property.
Step 3.14.2
Combine terms.
Tap for more steps...
Step 3.14.2.1
Multiply by .
Step 3.14.2.2
Multiply by .
Step 4
Find the fourth derivative.
Tap for more steps...
Step 4.1
By the Sum Rule, the derivative of with respect to is .
Step 4.2
Evaluate .
Tap for more steps...
Step 4.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 4.2.2
Differentiate using the Power Rule which states that is where .
Step 4.2.3
Multiply by .
Step 4.3
Differentiate using the Constant Rule.
Tap for more steps...
Step 4.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 4.3.2
Add and .
Step 5
The fourth derivative of with respect to is .