Enter a problem...
Calculus Examples
Step 1
Differentiate both sides of the equation.
Step 2
Since is constant with respect to , the derivative of with respect to is .
Step 3
Step 3.1
Differentiate using the Product Rule which states that is where and .
Step 3.2
Differentiate using the Power Rule.
Step 3.2.1
Differentiate using the Power Rule which states that is where .
Step 3.2.2
Move to the left of .
Step 3.3
Rewrite as .
Step 3.4
Reorder terms.
Step 4
Reform the equation by setting the left side equal to the right side.
Step 5
Step 5.1
Rewrite the equation as .
Step 5.2
Subtract from both sides of the equation.
Step 5.3
Divide each term in by and simplify.
Step 5.3.1
Divide each term in by .
Step 5.3.2
Simplify the left side.
Step 5.3.2.1
Cancel the common factor of .
Step 5.3.2.1.1
Cancel the common factor.
Step 5.3.2.1.2
Divide by .
Step 5.3.3
Simplify the right side.
Step 5.3.3.1
Cancel the common factor of and .
Step 5.3.3.1.1
Factor out of .
Step 5.3.3.1.2
Cancel the common factors.
Step 5.3.3.1.2.1
Factor out of .
Step 5.3.3.1.2.2
Cancel the common factor.
Step 5.3.3.1.2.3
Rewrite the expression.
Step 5.3.3.2
Move the negative in front of the fraction.
Step 6
Replace with .