Calculus Examples

Find dy/dx (sin(pix)+cos(piy))^2=2
Step 1
Differentiate both sides of the equation.
Step 2
Differentiate the left side of the equation.
Tap for more steps...
Step 2.1
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 2.1.1
To apply the Chain Rule, set as .
Step 2.1.2
Differentiate using the Power Rule which states that is where .
Step 2.1.3
Replace all occurrences of with .
Step 2.2
By the Sum Rule, the derivative of with respect to is .
Step 2.3
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 2.3.1
To apply the Chain Rule, set as .
Step 2.3.2
The derivative of with respect to is .
Step 2.3.3
Replace all occurrences of with .
Step 2.4
Differentiate.
Tap for more steps...
Step 2.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.4.2
Differentiate using the Power Rule which states that is where .
Step 2.4.3
Multiply by .
Step 2.5
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 2.5.1
To apply the Chain Rule, set as .
Step 2.5.2
The derivative of with respect to is .
Step 2.5.3
Replace all occurrences of with .
Step 2.6
Since is constant with respect to , the derivative of with respect to is .
Step 2.7
Rewrite as .
Step 2.8
Apply the distributive property.
Step 3
Since is constant with respect to , the derivative of with respect to is .
Step 4
Reform the equation by setting the left side equal to the right side.
Step 5
Solve for .
Tap for more steps...
Step 5.1
Divide each term in by and simplify.
Tap for more steps...
Step 5.1.1
Divide each term in by .
Step 5.1.2
Simplify the left side.
Tap for more steps...
Step 5.1.2.1
Cancel the common factor of .
Tap for more steps...
Step 5.1.2.1.1
Cancel the common factor.
Step 5.1.2.1.2
Divide by .
Step 5.1.2.2
Reorder factors in .
Step 5.1.3
Simplify the right side.
Tap for more steps...
Step 5.1.3.1
Cancel the common factor of and .
Tap for more steps...
Step 5.1.3.1.1
Factor out of .
Step 5.1.3.1.2
Cancel the common factors.
Tap for more steps...
Step 5.1.3.1.2.1
Factor out of .
Step 5.1.3.1.2.2
Factor out of .
Step 5.1.3.1.2.3
Factor out of .
Step 5.1.3.1.2.4
Cancel the common factor.
Step 5.1.3.1.2.5
Rewrite the expression.
Step 5.1.3.2
Divide by .
Step 5.2
Subtract from both sides of the equation.
Step 5.3
Divide each term in by and simplify.
Tap for more steps...
Step 5.3.1
Divide each term in by .
Step 5.3.2
Simplify the left side.
Tap for more steps...
Step 5.3.2.1
Dividing two negative values results in a positive value.
Step 5.3.2.2
Cancel the common factor of .
Tap for more steps...
Step 5.3.2.2.1
Cancel the common factor.
Step 5.3.2.2.2
Rewrite the expression.
Step 5.3.2.3
Cancel the common factor of .
Tap for more steps...
Step 5.3.2.3.1
Cancel the common factor.
Step 5.3.2.3.2
Divide by .
Step 5.3.3
Simplify the right side.
Tap for more steps...
Step 5.3.3.1
Dividing two negative values results in a positive value.
Step 5.3.3.2
Cancel the common factor of .
Tap for more steps...
Step 5.3.3.2.1
Cancel the common factor.
Step 5.3.3.2.2
Rewrite the expression.
Step 5.3.3.3
Rewrite as a product.
Step 5.3.3.4
Write as a fraction with denominator .
Step 5.3.3.5
Simplify.
Tap for more steps...
Step 5.3.3.5.1
Divide by .
Step 5.3.3.5.2
Convert from to .
Step 6
Replace with .