Calculus Examples

Find the Derivative - d/dx x+32/(x^2)
Step 1
Differentiate.
Tap for more steps...
Step 1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.2
Differentiate using the Power Rule which states that is where .
Step 2
Evaluate .
Tap for more steps...
Step 2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2
Rewrite as .
Step 2.3
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 2.3.1
To apply the Chain Rule, set as .
Step 2.3.2
Differentiate using the Power Rule which states that is where .
Step 2.3.3
Replace all occurrences of with .
Step 2.4
Differentiate using the Power Rule which states that is where .
Step 2.5
Multiply the exponents in .
Tap for more steps...
Step 2.5.1
Apply the power rule and multiply exponents, .
Step 2.5.2
Multiply by .
Step 2.6
Multiply by .
Step 2.7
Raise to the power of .
Step 2.8
Use the power rule to combine exponents.
Step 2.9
Subtract from .
Step 2.10
Multiply by .
Step 3
Rewrite the expression using the negative exponent rule .
Step 4
Simplify.
Tap for more steps...
Step 4.1
Combine terms.
Tap for more steps...
Step 4.1.1
Combine and .
Step 4.1.2
Move the negative in front of the fraction.
Step 4.2
Reorder terms.