Calculus Examples

Find the Derivative - d/d@VAR f(x)=sin(x)csc(x)
f(x)=sin(x)csc(x)f(x)=sin(x)csc(x)
Step 1
Differentiate using the Product Rule which states that ddx[f(x)g(x)]ddx[f(x)g(x)] is f(x)ddx[g(x)]+g(x)ddx[f(x)]f(x)ddx[g(x)]+g(x)ddx[f(x)] where f(x)=sin(x)f(x)=sin(x) and g(x)=csc(x)g(x)=csc(x).
sin(x)ddx[csc(x)]+csc(x)ddx[sin(x)]sin(x)ddx[csc(x)]+csc(x)ddx[sin(x)]
Step 2
The derivative of csc(x)csc(x) with respect to xx is -csc(x)cot(x)csc(x)cot(x).
sin(x)(-csc(x)cot(x))+csc(x)ddx[sin(x)]sin(x)(csc(x)cot(x))+csc(x)ddx[sin(x)]
Step 3
The derivative of sin(x)sin(x) with respect to xx is cos(x)cos(x).
sin(x)(-csc(x)cot(x))+csc(x)cos(x)sin(x)(csc(x)cot(x))+csc(x)cos(x)
Step 4
Simplify.
Tap for more steps...
Step 4.1
Reorder terms.
-cot(x)csc(x)sin(x)+cos(x)csc(x)cot(x)csc(x)sin(x)+cos(x)csc(x)
Step 4.2
Simplify each term.
Tap for more steps...
Step 4.2.1
Rewrite cot(x)cot(x) in terms of sines and cosines.
-cos(x)sin(x)csc(x)sin(x)+cos(x)csc(x)cos(x)sin(x)csc(x)sin(x)+cos(x)csc(x)
Step 4.2.2
Rewrite csc(x)csc(x) in terms of sines and cosines.
-cos(x)sin(x)1sin(x)sin(x)+cos(x)csc(x)cos(x)sin(x)1sin(x)sin(x)+cos(x)csc(x)
Step 4.2.3
Multiply -cos(x)sin(x)1sin(x)cos(x)sin(x)1sin(x).
Tap for more steps...
Step 4.2.3.1
Multiply 1sin(x)1sin(x) by cos(x)sin(x)cos(x)sin(x).
-cos(x)sin(x)sin(x)sin(x)+cos(x)csc(x)cos(x)sin(x)sin(x)sin(x)+cos(x)csc(x)
Step 4.2.3.2
Raise sin(x)sin(x) to the power of 11.
-cos(x)sin1(x)sin(x)sin(x)+cos(x)csc(x)cos(x)sin1(x)sin(x)sin(x)+cos(x)csc(x)
Step 4.2.3.3
Raise sin(x)sin(x) to the power of 11.
-cos(x)sin1(x)sin1(x)sin(x)+cos(x)csc(x)cos(x)sin1(x)sin1(x)sin(x)+cos(x)csc(x)
Step 4.2.3.4
Use the power rule aman=am+n to combine exponents.
-cos(x)sin(x)1+1sin(x)+cos(x)csc(x)
Step 4.2.3.5
Add 1 and 1.
-cos(x)sin2(x)sin(x)+cos(x)csc(x)
-cos(x)sin2(x)sin(x)+cos(x)csc(x)
Step 4.2.4
Cancel the common factor of sin(x).
Tap for more steps...
Step 4.2.4.1
Move the leading negative in -cos(x)sin2(x) into the numerator.
-cos(x)sin2(x)sin(x)+cos(x)csc(x)
Step 4.2.4.2
Factor sin(x) out of sin2(x).
-cos(x)sin(x)sin(x)sin(x)+cos(x)csc(x)
Step 4.2.4.3
Cancel the common factor.
-cos(x)sin(x)sin(x)sin(x)+cos(x)csc(x)
Step 4.2.4.4
Rewrite the expression.
-cos(x)sin(x)+cos(x)csc(x)
-cos(x)sin(x)+cos(x)csc(x)
Step 4.2.5
Move the negative in front of the fraction.
-cos(x)sin(x)+cos(x)csc(x)
Step 4.2.6
Rewrite csc(x) in terms of sines and cosines.
-cos(x)sin(x)+cos(x)1sin(x)
Step 4.2.7
Combine cos(x) and 1sin(x).
-cos(x)sin(x)+cos(x)sin(x)
-cos(x)sin(x)+cos(x)sin(x)
Step 4.3
Add -cos(x)sin(x) and cos(x)sin(x).
0
0
Enter a problem...
 [x2  12  π  xdx ]