Enter a problem...
Calculus Examples
,
Step 1
Step 1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.2
Evaluate .
Step 1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.2.3
Multiply by .
Step 1.3
Evaluate .
Step 1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.2
Differentiate using the Power Rule which states that is where .
Step 1.3.3
Multiply by .
Step 1.4
Evaluate the derivative at .
Step 1.5
Simplify.
Step 1.5.1
Simplify each term.
Step 1.5.1.1
One to any power is one.
Step 1.5.1.2
Multiply by .
Step 1.5.2
Subtract from .
Step 2
Step 2.1
Use the slope and a given point to substitute for and in the point-slope form , which is derived from the slope equation .
Step 2.2
Simplify the equation and keep it in point-slope form.
Step 2.3
Solve for .
Step 2.3.1
Add and .
Step 2.3.2
Simplify .
Step 2.3.2.1
Apply the distributive property.
Step 2.3.2.2
Multiply by .
Step 3