Calculus Examples

Evaluate the Limit limit as x approaches 0 of (sin(3x))/(x^2)
Step 1
Apply L'Hospital's rule.
Tap for more steps...
Step 1.1
Evaluate the limit of the numerator and the limit of the denominator.
Tap for more steps...
Step 1.1.1
Take the limit of the numerator and the limit of the denominator.
Step 1.1.2
Evaluate the limit of the numerator.
Tap for more steps...
Step 1.1.2.1
Evaluate the limit.
Tap for more steps...
Step 1.1.2.1.1
Move the limit inside the trig function because sine is continuous.
Step 1.1.2.1.2
Move the term outside of the limit because it is constant with respect to .
Step 1.1.2.2
Evaluate the limit of by plugging in for .
Step 1.1.2.3
Simplify the answer.
Tap for more steps...
Step 1.1.2.3.1
Multiply by .
Step 1.1.2.3.2
The exact value of is .
Step 1.1.3
Evaluate the limit of the denominator.
Tap for more steps...
Step 1.1.3.1
Move the exponent from outside the limit using the Limits Power Rule.
Step 1.1.3.2
Evaluate the limit of by plugging in for .
Step 1.1.3.3
Raising to any positive power yields .
Step 1.1.3.4
The expression contains a division by . The expression is undefined.
Undefined
Step 1.1.4
The expression contains a division by . The expression is undefined.
Undefined
Step 1.2
Since is of indeterminate form, apply L'Hospital's Rule. L'Hospital's Rule states that the limit of a quotient of functions is equal to the limit of the quotient of their derivatives.
Step 1.3
Find the derivative of the numerator and denominator.
Tap for more steps...
Step 1.3.1
Differentiate the numerator and denominator.
Step 1.3.2
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 1.3.2.1
To apply the Chain Rule, set as .
Step 1.3.2.2
The derivative of with respect to is .
Step 1.3.2.3
Replace all occurrences of with .
Step 1.3.3
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.4
Differentiate using the Power Rule which states that is where .
Step 1.3.5
Multiply by .
Step 1.3.6
Move to the left of .
Step 1.3.7
Differentiate using the Power Rule which states that is where .
Step 2
Since the function approaches from the left and from the right, the limit does not exist.