Calculus Examples

Find the Local Maxima and Minima f(x)=ax^2+bx+c
Step 1
Find the first derivative of the function.
Tap for more steps...
Step 1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.2
Evaluate .
Tap for more steps...
Step 1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.2.3
Move to the left of .
Step 1.3
Evaluate .
Tap for more steps...
Step 1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.2
Differentiate using the Power Rule which states that is where .
Step 1.3.3
Multiply by .
Step 1.4
Since is constant with respect to , the derivative of with respect to is .
Step 1.5
Simplify.
Tap for more steps...
Step 1.5.1
Add and .
Step 1.5.2
Reorder terms.
Step 2
Find the second derivative of the function.
Tap for more steps...
Step 2.1
Differentiate.
Tap for more steps...
Step 2.1.1
By the Sum Rule, the derivative of with respect to is .
Step 2.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 2.2
Evaluate .
Tap for more steps...
Step 2.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.2
Differentiate using the Power Rule which states that is where .
Step 2.2.3
Multiply by .
Step 2.3
Add and .
Step 3
To find the local maximum and minimum values of the function, set the derivative equal to and solve.
Step 4
Find the first derivative.
Tap for more steps...
Step 4.1
Find the first derivative.
Tap for more steps...
Step 4.1.1
By the Sum Rule, the derivative of with respect to is .
Step 4.1.2
Evaluate .
Tap for more steps...
Step 4.1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 4.1.2.2
Differentiate using the Power Rule which states that is where .
Step 4.1.2.3
Move to the left of .
Step 4.1.3
Evaluate .
Tap for more steps...
Step 4.1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 4.1.3.2
Differentiate using the Power Rule which states that is where .
Step 4.1.3.3
Multiply by .
Step 4.1.4
Since is constant with respect to , the derivative of with respect to is .
Step 4.1.5
Simplify.
Tap for more steps...
Step 4.1.5.1
Add and .
Step 4.1.5.2
Reorder terms.
Step 4.2
The first derivative of with respect to is .
Step 5
Set the first derivative equal to then solve the equation .
Tap for more steps...
Step 5.1
Set the first derivative equal to .
Step 5.2
Subtract from both sides of the equation.
Step 5.3
Divide each term in by and simplify.
Tap for more steps...
Step 5.3.1
Divide each term in by .
Step 5.3.2
Simplify the left side.
Tap for more steps...
Step 5.3.2.1
Cancel the common factor of .
Tap for more steps...
Step 5.3.2.1.1
Cancel the common factor.
Step 5.3.2.1.2
Rewrite the expression.
Step 5.3.2.2
Cancel the common factor of .
Tap for more steps...
Step 5.3.2.2.1
Cancel the common factor.
Step 5.3.2.2.2
Divide by .
Step 5.3.3
Simplify the right side.
Tap for more steps...
Step 5.3.3.1
Move the negative in front of the fraction.
Step 6
Find the values where the derivative is undefined.
Tap for more steps...
Step 6.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 7
Critical points to evaluate.
Step 8
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 9
Since the first derivative test failed, there are no local extrema.
No Local Extrema
Step 10