Calculus Examples

Evaluate Using L'Hospital's Rule limit as x approaches 0 of (sin(x^2))/x
Step 1
Evaluate the limit of the numerator and the limit of the denominator.
Tap for more steps...
Step 1.1
Take the limit of the numerator and the limit of the denominator.
Step 1.2
Evaluate the limit of the numerator.
Tap for more steps...
Step 1.2.1
Evaluate the limit.
Tap for more steps...
Step 1.2.1.1
Move the limit inside the trig function because sine is continuous.
Step 1.2.1.2
Move the exponent from outside the limit using the Limits Power Rule.
Step 1.2.2
Evaluate the limit of by plugging in for .
Step 1.2.3
Simplify the answer.
Tap for more steps...
Step 1.2.3.1
Raising to any positive power yields .
Step 1.2.3.2
The exact value of is .
Step 1.3
Evaluate the limit of by plugging in for .
Step 1.4
The expression contains a division by . The expression is undefined.
Undefined
Step 2
Since is of indeterminate form, apply L'Hospital's Rule. L'Hospital's Rule states that the limit of a quotient of functions is equal to the limit of the quotient of their derivatives.
Step 3
Find the derivative of the numerator and denominator.
Tap for more steps...
Step 3.1
Differentiate the numerator and denominator.
Step 3.2
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 3.2.1
To apply the Chain Rule, set as .
Step 3.2.2
The derivative of with respect to is .
Step 3.2.3
Replace all occurrences of with .
Step 3.3
Differentiate using the Power Rule which states that is where .
Step 3.4
Reorder the factors of .
Step 3.5
Differentiate using the Power Rule which states that is where .
Step 4
Divide by .
Step 5
Move the term outside of the limit because it is constant with respect to .
Step 6
Split the limit using the Product of Limits Rule on the limit as approaches .
Step 7
Move the limit inside the trig function because cosine is continuous.
Step 8
Move the exponent from outside the limit using the Limits Power Rule.
Step 9
Evaluate the limits by plugging in for all occurrences of .
Tap for more steps...
Step 9.1
Evaluate the limit of by plugging in for .
Step 9.2
Evaluate the limit of by plugging in for .
Step 10
Simplify the answer.
Tap for more steps...
Step 10.1
Multiply by .
Step 10.2
Raising to any positive power yields .
Step 10.3
The exact value of is .
Step 10.4
Multiply by .