Calculus Examples

Evaluate Using L'Hospital's Rule limit as x approaches 8 of (1+a/x)^(bx)
limx8(1+ax)bxlimx8(1+ax)bx
Step 1
Combine terms.
Tap for more steps...
Step 1.1
Write 11 as a fraction with a common denominator.
limx8(xx+ax)bxlimx8(xx+ax)bx
Step 1.2
Combine the numerators over the common denominator.
limx8(x+ax)bxlimx8(x+ax)bx
limx8(x+ax)bxlimx8(x+ax)bx
Step 2
Use the properties of logarithms to simplify the limit.
Tap for more steps...
Step 2.1
Rewrite (x+ax)bx(x+ax)bx as eln((x+ax)bx)eln((x+ax)bx).
limx8eln((x+ax)bx)
Step 2.2
Expand ln((x+ax)bx) by moving bx outside the logarithm.
limx8ebxln(x+ax)
limx8ebxln(x+ax)
Step 3
Evaluate the limit.
Tap for more steps...
Step 3.1
Move the limit into the exponent.
elimx8bxln(x+ax)
Step 3.2
Move the term b outside of the limit because it is constant with respect to x.
eblimx8xln(x+ax)
Step 3.3
Split the limit using the Product of Limits Rule on the limit as x approaches 8.
eblimx8xlimx8ln(x+ax)
Step 3.4
Move the limit inside the logarithm.
eblimx8xln(limx8x+ax)
Step 3.5
Split the limit using the Limits Quotient Rule on the limit as x approaches 8.
eblimx8xln(limx8x+alimx8x)
Step 3.6
Split the limit using the Sum of Limits Rule on the limit as x approaches 8.
eblimx8xln(limx8x+limx8alimx8x)
Step 3.7
Evaluate the limit of a which is constant as x approaches 8.
eblimx8xln(limx8x+alimx8x)
eblimx8xln(limx8x+alimx8x)
Step 4
Evaluate the limits by plugging in 8 for all occurrences of x.
Tap for more steps...
Step 4.1
Evaluate the limit of x by plugging in 8 for x.
eb8ln(limx8x+alimx8x)
Step 4.2
Evaluate the limit of x by plugging in 8 for x.
eb8ln(8+alimx8x)
Step 4.3
Evaluate the limit of x by plugging in 8 for x.
eb8ln(8+a8)
eb8ln(8+a8)
Step 5
Move 8 to the left of b.
e8bln(8+a8)
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
!
!
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]