Enter a problem...
Calculus Examples
limx→8(1+ax)bxlimx→8(1+ax)bx
Step 1
Step 1.1
Write 11 as a fraction with a common denominator.
limx→8(xx+ax)bxlimx→8(xx+ax)bx
Step 1.2
Combine the numerators over the common denominator.
limx→8(x+ax)bxlimx→8(x+ax)bx
limx→8(x+ax)bxlimx→8(x+ax)bx
Step 2
Step 2.1
Rewrite (x+ax)bx(x+ax)bx as eln((x+ax)bx)eln((x+ax)bx).
limx→8eln((x+ax)bx)
Step 2.2
Expand ln((x+ax)bx) by moving bx outside the logarithm.
limx→8ebxln(x+ax)
limx→8ebxln(x+ax)
Step 3
Step 3.1
Move the limit into the exponent.
elimx→8bxln(x+ax)
Step 3.2
Move the term b outside of the limit because it is constant with respect to x.
eblimx→8xln(x+ax)
Step 3.3
Split the limit using the Product of Limits Rule on the limit as x approaches 8.
eblimx→8x⋅limx→8ln(x+ax)
Step 3.4
Move the limit inside the logarithm.
eblimx→8x⋅ln(limx→8x+ax)
Step 3.5
Split the limit using the Limits Quotient Rule on the limit as x approaches 8.
eblimx→8x⋅ln(limx→8x+alimx→8x)
Step 3.6
Split the limit using the Sum of Limits Rule on the limit as x approaches 8.
eblimx→8x⋅ln(limx→8x+limx→8alimx→8x)
Step 3.7
Evaluate the limit of a which is constant as x approaches 8.
eblimx→8x⋅ln(limx→8x+alimx→8x)
eblimx→8x⋅ln(limx→8x+alimx→8x)
Step 4
Step 4.1
Evaluate the limit of x by plugging in 8 for x.
eb⋅8⋅ln(limx→8x+alimx→8x)
Step 4.2
Evaluate the limit of x by plugging in 8 for x.
eb⋅8⋅ln(8+alimx→8x)
Step 4.3
Evaluate the limit of x by plugging in 8 for x.
eb⋅8⋅ln(8+a8)
eb⋅8⋅ln(8+a8)
Step 5
Move 8 to the left of b.
e8bln(8+a8)