Calculus Examples

Evaluate the Integral integral from 0 to 3 of 2x-3 with respect to x
302x-3dx302x3dx
Step 1
Split the single integral into multiple integrals.
302xdx+30-3dx302xdx+303dx
Step 2
Since 22 is constant with respect to xx, move 22 out of the integral.
230xdx+30-3dx230xdx+303dx
Step 3
By the Power Rule, the integral of xx with respect to xx is 12x212x2.
2(12x2]30)+30-3dx2(12x2]30)+303dx
Step 4
Combine 1212 and x2x2.
2(x22]30)+30-3dx2(x22]30)+303dx
Step 5
Apply the constant rule.
2(x22]30)+-3x]302(x22]30)+3x]30
Step 6
Substitute and simplify.
Tap for more steps...
Step 6.1
Evaluate x22x22 at 33 and at 00.
2((322)-022)+-3x]302((322)022)+3x]30
Step 6.2
Evaluate -3x3x at 33 and at 00.
2(322-022)+-33+302(322022)+33+30
Step 6.3
Simplify.
Tap for more steps...
Step 6.3.1
Raise 33 to the power of 22.
2(92-022)-33+302(92022)33+30
Step 6.3.2
Raising 00 to any positive power yields 00.
2(92-02)-33+302(9202)33+30
Step 6.3.3
Cancel the common factor of 00 and 22.
Tap for more steps...
Step 6.3.3.1
Factor 22 out of 00.
2(92-2(0)2)-33+302(922(0)2)33+30
Step 6.3.3.2
Cancel the common factors.
Tap for more steps...
Step 6.3.3.2.1
Factor 22 out of 22.
2(92-2021)-33+302(922021)33+30
Step 6.3.3.2.2
Cancel the common factor.
2(92-2021)-33+30
Step 6.3.3.2.3
Rewrite the expression.
2(92-01)-33+30
Step 6.3.3.2.4
Divide 0 by 1.
2(92-0)-33+30
2(92-0)-33+30
2(92-0)-33+30
Step 6.3.4
Multiply -1 by 0.
2(92+0)-33+30
Step 6.3.5
Add 92 and 0.
2(92)-33+30
Step 6.3.6
Combine 2 and 92.
292-33+30
Step 6.3.7
Multiply 2 by 9.
182-33+30
Step 6.3.8
Cancel the common factor of 18 and 2.
Tap for more steps...
Step 6.3.8.1
Factor 2 out of 18.
292-33+30
Step 6.3.8.2
Cancel the common factors.
Tap for more steps...
Step 6.3.8.2.1
Factor 2 out of 2.
292(1)-33+30
Step 6.3.8.2.2
Cancel the common factor.
2921-33+30
Step 6.3.8.2.3
Rewrite the expression.
91-33+30
Step 6.3.8.2.4
Divide 9 by 1.
9-33+30
9-33+30
9-33+30
Step 6.3.9
Multiply -3 by 3.
9-9+30
Step 6.3.10
Multiply 3 by 0.
9-9+0
Step 6.3.11
Add -9 and 0.
9-9
Step 6.3.12
Subtract 9 from 9.
0
0
0
Step 7
 [x2  12  π  xdx ]