Enter a problem...
Calculus Examples
∫302x-3dx∫302x−3dx
Step 1
Split the single integral into multiple integrals.
∫302xdx+∫30-3dx∫302xdx+∫30−3dx
Step 2
Since 22 is constant with respect to xx, move 22 out of the integral.
2∫30xdx+∫30-3dx2∫30xdx+∫30−3dx
Step 3
By the Power Rule, the integral of xx with respect to xx is 12x212x2.
2(12x2]30)+∫30-3dx2(12x2]30)+∫30−3dx
Step 4
Combine 1212 and x2x2.
2(x22]30)+∫30-3dx2(x22]30)+∫30−3dx
Step 5
Apply the constant rule.
2(x22]30)+-3x]302(x22]30)+−3x]30
Step 6
Step 6.1
Evaluate x22x22 at 33 and at 00.
2((322)-022)+-3x]302((322)−022)+−3x]30
Step 6.2
Evaluate -3x−3x at 33 and at 00.
2(322-022)+-3⋅3+3⋅02(322−022)+−3⋅3+3⋅0
Step 6.3
Simplify.
Step 6.3.1
Raise 33 to the power of 22.
2(92-022)-3⋅3+3⋅02(92−022)−3⋅3+3⋅0
Step 6.3.2
Raising 00 to any positive power yields 00.
2(92-02)-3⋅3+3⋅02(92−02)−3⋅3+3⋅0
Step 6.3.3
Cancel the common factor of 00 and 22.
Step 6.3.3.1
Factor 22 out of 00.
2(92-2(0)2)-3⋅3+3⋅02(92−2(0)2)−3⋅3+3⋅0
Step 6.3.3.2
Cancel the common factors.
Step 6.3.3.2.1
Factor 22 out of 22.
2(92-2⋅02⋅1)-3⋅3+3⋅02(92−2⋅02⋅1)−3⋅3+3⋅0
Step 6.3.3.2.2
Cancel the common factor.
2(92-2⋅02⋅1)-3⋅3+3⋅0
Step 6.3.3.2.3
Rewrite the expression.
2(92-01)-3⋅3+3⋅0
Step 6.3.3.2.4
Divide 0 by 1.
2(92-0)-3⋅3+3⋅0
2(92-0)-3⋅3+3⋅0
2(92-0)-3⋅3+3⋅0
Step 6.3.4
Multiply -1 by 0.
2(92+0)-3⋅3+3⋅0
Step 6.3.5
Add 92 and 0.
2(92)-3⋅3+3⋅0
Step 6.3.6
Combine 2 and 92.
2⋅92-3⋅3+3⋅0
Step 6.3.7
Multiply 2 by 9.
182-3⋅3+3⋅0
Step 6.3.8
Cancel the common factor of 18 and 2.
Step 6.3.8.1
Factor 2 out of 18.
2⋅92-3⋅3+3⋅0
Step 6.3.8.2
Cancel the common factors.
Step 6.3.8.2.1
Factor 2 out of 2.
2⋅92(1)-3⋅3+3⋅0
Step 6.3.8.2.2
Cancel the common factor.
2⋅92⋅1-3⋅3+3⋅0
Step 6.3.8.2.3
Rewrite the expression.
91-3⋅3+3⋅0
Step 6.3.8.2.4
Divide 9 by 1.
9-3⋅3+3⋅0
9-3⋅3+3⋅0
9-3⋅3+3⋅0
Step 6.3.9
Multiply -3 by 3.
9-9+3⋅0
Step 6.3.10
Multiply 3 by 0.
9-9+0
Step 6.3.11
Add -9 and 0.
9-9
Step 6.3.12
Subtract 9 from 9.
0
0
0
Step 7