Enter a problem...
Calculus Examples
∫cos6(x)dx
Step 1
Step 1.1
Factor 2 out of 6.
∫cos(x)2(3)dx
Step 1.2
Rewrite cos(x)2(3) as exponentiation.
∫(cos2(x))3dx
∫(cos2(x))3dx
Step 2
Use the half-angle formula to rewrite cos2(x) as 1+cos(2x)2.
∫(1+cos(2x)2)3dx
Step 3
Step 3.1
Let u1=2x. Find du1dx.
Step 3.1.1
Differentiate 2x.
ddx[2x]
Step 3.1.2
Since 2 is constant with respect to x, the derivative of 2x with respect to x is 2ddx[x].
2ddx[x]
Step 3.1.3
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
2⋅1
Step 3.1.4
Multiply 2 by 1.
2
2
Step 3.2
Rewrite the problem using u1 and du1.
∫(1+cos(u1)2)312du1
∫(1+cos(u1)2)312du1
Step 4
Since 12 is constant with respect to u1, move 12 out of the integral.
12∫(1+cos(u1)2)3du1
Step 5
Step 5.1
Rewrite 1+cos(u1)2 as a product.
12∫(12⋅(1+cos(u1)))3du1
Step 5.2
Expand (12⋅(1+cos(u1)))3.
Step 5.2.1
Rewrite the exponentiation as a product.
12∫12⋅(1+cos(u1))(12⋅(1+cos(u1)))2du1
Step 5.2.2
Rewrite the exponentiation as a product.
12∫12⋅(1+cos(u1))(12⋅(1+cos(u1))(12⋅(1+cos(u1))))du1
Step 5.2.3
Apply the distributive property.
12∫(12⋅1+12⋅cos(u1))(12⋅(1+cos(u1))(12⋅(1+cos(u1))))du1
Step 5.2.4
Apply the distributive property.
12∫(12⋅1+12⋅cos(u1))((12⋅1+12⋅cos(u1))(12⋅(1+cos(u1))))du1
Step 5.2.5
Apply the distributive property.
12∫(12⋅1+12⋅cos(u1))((12⋅1+12⋅cos(u1))(12⋅1+12⋅cos(u1)))du1
Step 5.2.6
Apply the distributive property.
12∫(12⋅1+12⋅cos(u1))(12⋅1(12⋅1+12⋅cos(u1))+12⋅cos(u1)(12⋅1+12⋅cos(u1)))du1
Step 5.2.7
Apply the distributive property.
12∫(12⋅1+12⋅cos(u1))(12⋅1(12⋅1)+12⋅1(12⋅cos(u1))+12⋅cos(u1)(12⋅1+12⋅cos(u1)))du1
Step 5.2.8
Apply the distributive property.
12∫(12⋅1+12⋅cos(u1))(12⋅1(12⋅1)+12⋅1(12⋅cos(u1))+12⋅cos(u1)(12⋅1)+12⋅cos(u1)(12⋅cos(u1)))du1
Step 5.2.9
Apply the distributive property.
12∫12⋅1(12⋅1(12⋅1)+12⋅1(12⋅cos(u1))+12⋅cos(u1)(12⋅1)+12⋅cos(u1)(12⋅cos(u1)))+12⋅cos(u1)(12⋅1(12⋅1)+12⋅1(12⋅cos(u1))+12⋅cos(u1)(12⋅1)+12⋅cos(u1)(12⋅cos(u1)))du1
Step 5.2.10
Apply the distributive property.
12∫12⋅1(12⋅1(12⋅1)+12⋅1(12⋅cos(u1)))+12⋅1(12⋅cos(u1)(12⋅1)+12⋅cos(u1)(12⋅cos(u1)))+12⋅cos(u1)(12⋅1(12⋅1)+12⋅1(12⋅cos(u1))+12⋅cos(u1)(12⋅1)+12⋅cos(u1)(12⋅cos(u1)))du1
Step 5.2.11
Apply the distributive property.
12∫12⋅1(12⋅1(12⋅1))+12⋅1(12⋅1(12⋅cos(u1)))+12⋅1(12⋅cos(u1)(12⋅1)+12⋅cos(u1)(12⋅cos(u1)))+12⋅cos(u1)(12⋅1(12⋅1)+12⋅1(12⋅cos(u1))+12⋅cos(u1)(12⋅1)+12⋅cos(u1)(12⋅cos(u1)))du1
Step 5.2.12
Apply the distributive property.
12∫12⋅1(12⋅1(12⋅1))+12⋅1(12⋅1(12⋅cos(u1)))+12⋅1(12⋅cos(u1)(12⋅1))+12⋅1(12⋅cos(u1)(12⋅cos(u1)))+12⋅cos(u1)(12⋅1(12⋅1)+12⋅1(12⋅cos(u1))+12⋅cos(u1)(12⋅1)+12⋅cos(u1)(12⋅cos(u1)))du1
Step 5.2.13
Apply the distributive property.
12∫12⋅1(12⋅1(12⋅1))+12⋅1(12⋅1(12⋅cos(u1)))+12⋅1(12⋅cos(u1)(12⋅1))+12⋅1(12⋅cos(u1)(12⋅cos(u1)))+12⋅cos(u1)(12⋅1(12⋅1)+12⋅1(12⋅cos(u1)))+12⋅cos(u1)(12⋅cos(u1)(12⋅1)+12⋅cos(u1)(12⋅cos(u1)))du1
Step 5.2.14
Apply the distributive property.
12∫12⋅1(12⋅1(12⋅1))+12⋅1(12⋅1(12⋅cos(u1)))+12⋅1(12⋅cos(u1)(12⋅1))+12⋅1(12⋅cos(u1)(12⋅cos(u1)))+12⋅cos(u1)(12⋅1(12⋅1))+12⋅cos(u1)(12⋅1(12⋅cos(u1)))+12⋅cos(u1)(12⋅cos(u1)(12⋅1)+12⋅cos(u1)(12⋅cos(u1)))du1
Step 5.2.15
Apply the distributive property.
12∫12⋅1(12⋅1(12⋅1))+12⋅1(12⋅1(12⋅cos(u1)))+12⋅1(12⋅cos(u1)(12⋅1))+12⋅1(12⋅cos(u1)(12⋅cos(u1)))+12⋅cos(u1)(12⋅1(12⋅1))+12⋅cos(u1)(12⋅1(12⋅cos(u1)))+12⋅cos(u1)(12⋅cos(u1)(12⋅1))+12⋅cos(u1)(12⋅cos(u1)(12⋅cos(u1)))du1
Step 5.2.16
Reorder 12 and 1.
12∫1⋅12(12⋅1(12⋅1))+12⋅1(12⋅1(12⋅cos(u1)))+12⋅1(12⋅cos(u1)(12⋅1))+12⋅1(12⋅cos(u1)(12⋅cos(u1)))+12⋅cos(u1)(12⋅1(12⋅1))+12⋅cos(u1)(12⋅1(12⋅cos(u1)))+12⋅cos(u1)(12⋅cos(u1)(12⋅1))+12⋅cos(u1)(12⋅cos(u1)(12⋅cos(u1)))du1
Step 5.2.17
Reorder 12 and 1.
12∫1⋅12(1⋅12(12⋅1))+12⋅1(12⋅1(12⋅cos(u1)))+12⋅1(12⋅cos(u1)(12⋅1))+12⋅1(12⋅cos(u1)(12⋅cos(u1)))+12⋅cos(u1)(12⋅1(12⋅1))+12⋅cos(u1)(12⋅1(12⋅cos(u1)))+12⋅cos(u1)(12⋅cos(u1)(12⋅1))+12⋅cos(u1)(12⋅cos(u1)(12⋅cos(u1)))du1
Step 5.2.18
Reorder 12 and 1.
12∫1⋅12(1⋅12(1⋅12))+12⋅1(12⋅1(12⋅cos(u1)))+12⋅1(12⋅cos(u1)(12⋅1))+12⋅1(12⋅cos(u1)(12⋅cos(u1)))+12⋅cos(u1)(12⋅1(12⋅1))+12⋅cos(u1)(12⋅1(12⋅cos(u1)))+12⋅cos(u1)(12⋅cos(u1)(12⋅1))+12⋅cos(u1)(12⋅cos(u1)(12⋅cos(u1)))du1
Step 5.2.19
Move 12.
12∫1⋅12(1⋅112⋅12)+12⋅1(12⋅1(12⋅cos(u1)))+12⋅1(12⋅cos(u1)(12⋅1))+12⋅1(12⋅cos(u1)(12⋅cos(u1)))+12⋅cos(u1)(12⋅1(12⋅1))+12⋅cos(u1)(12⋅1(12⋅cos(u1)))+12⋅cos(u1)(12⋅cos(u1)(12⋅1))+12⋅cos(u1)(12⋅cos(u1)(12⋅cos(u1)))du1
Step 5.2.20
Move parentheses.
12∫1⋅12(1⋅112)⋅12+12⋅1(12⋅1(12⋅cos(u1)))+12⋅1(12⋅cos(u1)(12⋅1))+12⋅1(12⋅cos(u1)(12⋅cos(u1)))+12⋅cos(u1)(12⋅1(12⋅1))+12⋅cos(u1)(12⋅1(12⋅cos(u1)))+12⋅cos(u1)(12⋅cos(u1)(12⋅1))+12⋅cos(u1)(12⋅cos(u1)(12⋅cos(u1)))du1
Step 5.2.21
Move parentheses.
12∫1⋅12(1⋅1)12⋅12+12⋅1(12⋅1(12⋅cos(u1)))+12⋅1(12⋅cos(u1)(12⋅1))+12⋅1(12⋅cos(u1)(12⋅cos(u1)))+12⋅cos(u1)(12⋅1(12⋅1))+12⋅cos(u1)(12⋅1(12⋅cos(u1)))+12⋅cos(u1)(12⋅cos(u1)(12⋅1))+12⋅cos(u1)(12⋅cos(u1)(12⋅cos(u1)))du1
Step 5.2.22
Move 12.
12∫1⋅1⋅11212⋅12+12⋅1(12⋅1(12⋅cos(u1)))+12⋅1(12⋅cos(u1)(12⋅1))+12⋅1(12⋅cos(u1)(12⋅cos(u1)))+12⋅cos(u1)(12⋅1(12⋅1))+12⋅cos(u1)(12⋅1(12⋅cos(u1)))+12⋅cos(u1)(12⋅cos(u1)(12⋅1))+12⋅cos(u1)(12⋅cos(u1)(12⋅cos(u1)))du1
Step 5.2.23
Reorder 12 and 1.
12∫1⋅1⋅11212⋅12+1⋅12(12⋅1(12⋅cos(u1)))+12⋅1(12⋅cos(u1)(12⋅1))+12⋅1(12⋅cos(u1)(12⋅cos(u1)))+12⋅cos(u1)(12⋅1(12⋅1))+12⋅cos(u1)(12⋅1(12⋅cos(u1)))+12⋅cos(u1)(12⋅cos(u1)(12⋅1))+12⋅cos(u1)(12⋅cos(u1)(12⋅cos(u1)))du1
Step 5.2.24
Reorder 12 and 1.
12∫1⋅1⋅11212⋅12+1⋅12(1⋅12(12⋅cos(u1)))+12⋅1(12⋅cos(u1)(12⋅1))+12⋅1(12⋅cos(u1)(12⋅cos(u1)))+12⋅cos(u1)(12⋅1(12⋅1))+12⋅cos(u1)(12⋅1(12⋅cos(u1)))+12⋅cos(u1)(12⋅cos(u1)(12⋅1))+12⋅cos(u1)(12⋅cos(u1)(12⋅cos(u1)))du1
Step 5.2.25
Move parentheses.
12∫1⋅1⋅11212⋅12+1⋅12(1⋅1212)⋅cos(u1)+12⋅1(12⋅cos(u1)(12⋅1))+12⋅1(12⋅cos(u1)(12⋅cos(u1)))+12⋅cos(u1)(12⋅1(12⋅1))+12⋅cos(u1)(12⋅1(12⋅cos(u1)))+12⋅cos(u1)(12⋅cos(u1)(12⋅1))+12⋅cos(u1)(12⋅cos(u1)(12⋅cos(u1)))du1
Step 5.2.26
Move parentheses.
12∫1⋅1⋅11212⋅12+1⋅12(1⋅12)12⋅cos(u1)+12⋅1(12⋅cos(u1)(12⋅1))+12⋅1(12⋅cos(u1)(12⋅cos(u1)))+12⋅cos(u1)(12⋅1(12⋅1))+12⋅cos(u1)(12⋅1(12⋅cos(u1)))+12⋅cos(u1)(12⋅cos(u1)(12⋅1))+12⋅cos(u1)(12⋅cos(u1)(12⋅cos(u1)))du1
Step 5.2.27
Move 12.
12∫1⋅1⋅11212⋅12+1⋅112⋅1212⋅cos(u1)+12⋅1(12⋅cos(u1)(12⋅1))+12⋅1(12⋅cos(u1)(12⋅cos(u1)))+12⋅cos(u1)(12⋅1(12⋅1))+12⋅cos(u1)(12⋅1(12⋅cos(u1)))+12⋅cos(u1)(12⋅cos(u1)(12⋅1))+12⋅cos(u1)(12⋅cos(u1)(12⋅cos(u1)))du1
Step 5.2.28
Reorder 12 and 1.
12∫1⋅1⋅11212⋅12+1⋅112⋅1212⋅cos(u1)+1⋅12(12⋅cos(u1)(12⋅1))+12⋅1(12⋅cos(u1)(12⋅cos(u1)))+12⋅cos(u1)(12⋅1(12⋅1))+12⋅cos(u1)(12⋅1(12⋅cos(u1)))+12⋅cos(u1)(12⋅cos(u1)(12⋅1))+12⋅cos(u1)(12⋅cos(u1)(12⋅cos(u1)))du1
Step 5.2.29
Reorder 12 and 1.
12∫1⋅1⋅11212⋅12+1⋅112⋅1212⋅cos(u1)+1⋅12(12⋅cos(u1)(1⋅12))+12⋅1(12⋅cos(u1)(12⋅cos(u1)))+12⋅cos(u1)(12⋅1(12⋅1))+12⋅cos(u1)(12⋅1(12⋅cos(u1)))+12⋅cos(u1)(12⋅cos(u1)(12⋅1))+12⋅cos(u1)(12⋅cos(u1)(12⋅cos(u1)))du1
Step 5.2.30
Move cos(u1).
12∫1⋅1⋅11212⋅12+1⋅112⋅1212⋅cos(u1)+1⋅12(12⋅1cos(u1)⋅12)+12⋅1(12⋅cos(u1)(12⋅cos(u1)))+12⋅cos(u1)(12⋅1(12⋅1))+12⋅cos(u1)(12⋅1(12⋅cos(u1)))+12⋅cos(u1)(12⋅cos(u1)(12⋅1))+12⋅cos(u1)(12⋅cos(u1)(12⋅cos(u1)))du1
Step 5.2.31
Reorder and .
Step 5.2.32
Move parentheses.
Step 5.2.33
Move parentheses.
Step 5.2.34
Move .
Step 5.2.35
Reorder and .
Step 5.2.36
Move parentheses.
Step 5.2.37
Move parentheses.
Step 5.2.38
Reorder and .
Step 5.2.39
Reorder and .
Step 5.2.40
Move .
Step 5.2.41
Move parentheses.
Step 5.2.42
Move parentheses.
Step 5.2.43
Move .
Step 5.2.44
Move .
Step 5.2.45
Reorder and .
Step 5.2.46
Move parentheses.
Step 5.2.47
Move parentheses.
Step 5.2.48
Move .
Step 5.2.49
Reorder and .
Step 5.2.50
Reorder and .
Step 5.2.51
Move .
Step 5.2.52
Reorder and .
Step 5.2.53
Move parentheses.
Step 5.2.54
Move parentheses.
Step 5.2.55
Move .
Step 5.2.56
Reorder and .
Step 5.2.57
Move parentheses.
Step 5.2.58
Move parentheses.
Step 5.2.59
Multiply by .
Step 5.2.60
Multiply by .
Step 5.2.61
Multiply by .
Step 5.2.62
Multiply by .
Step 5.2.63
Multiply by .
Step 5.2.64
Multiply by .
Step 5.2.65
Multiply by .
Step 5.2.66
Multiply by .
Step 5.2.67
Multiply by .
Step 5.2.68
Multiply by .
Step 5.2.69
Multiply by .
Step 5.2.70
Multiply by .
Step 5.2.71
Multiply by .
Step 5.2.72
Combine and .
Step 5.2.73
Multiply by .
Step 5.2.74
Multiply by .
Step 5.2.75
Multiply by .
Step 5.2.76
Multiply by .
Step 5.2.77
Combine and .
Step 5.2.78
Multiply by .
Step 5.2.79
Multiply by .
Step 5.2.80
Multiply by .
Step 5.2.81
Multiply by .
Step 5.2.82
Multiply by .
Step 5.2.83
Combine and .
Step 5.2.84
Multiply by .
Step 5.2.85
Multiply by .
Step 5.2.86
Combine and .
Step 5.2.87
Raise to the power of .
Step 5.2.88
Raise to the power of .
Step 5.2.89
Use the power rule to combine exponents.
Step 5.2.90
Add and .
Step 5.2.91
Add and .
Step 5.2.92
Combine and .
Step 5.2.93
Multiply by .
Step 5.2.94
Multiply by .
Step 5.2.95
Combine and .
Step 5.2.96
Multiply by .
Step 5.2.97
Multiply by .
Step 5.2.98
Multiply by .
Step 5.2.99
Multiply by .
Step 5.2.100
Multiply by .
Step 5.2.101
Combine and .
Step 5.2.102
Multiply by .
Step 5.2.103
Multiply by .
Step 5.2.104
Multiply by .
Step 5.2.105
Multiply by .
Step 5.2.106
Combine and .
Step 5.2.107
Raise to the power of .
Step 5.2.108
Raise to the power of .
Step 5.2.109
Use the power rule to combine exponents.
Step 5.2.110
Add and .
Step 5.2.111
Multiply by .
Step 5.2.112
Combine and .
Step 5.2.113
Multiply by .
Step 5.2.114
Multiply by .
Step 5.2.115
Combine and .
Step 5.2.116
Raise to the power of .
Step 5.2.117
Raise to the power of .
Step 5.2.118
Use the power rule to combine exponents.
Step 5.2.119
Add and .
Step 5.2.120
Multiply by .
Step 5.2.121
Multiply by .
Step 5.2.122
Combine and .
Step 5.2.123
Multiply by .
Step 5.2.124
Multiply by .
Step 5.2.125
Combine and .
Step 5.2.126
Raise to the power of .
Step 5.2.127
Raise to the power of .
Step 5.2.128
Use the power rule to combine exponents.
Step 5.2.129
Add and .
Step 5.2.130
Multiply by .
Step 5.2.131
Multiply by .
Step 5.2.132
Combine and .
Step 5.2.133
Raise to the power of .
Step 5.2.134
Use the power rule to combine exponents.
Step 5.2.135
Add and .
Step 5.2.136
Add and .
Step 5.2.137
Combine and .
Step 5.2.138
Reorder and .
Step 5.2.139
Reorder and .
Step 5.2.140
Reorder and .
Step 5.2.141
Move .
Step 5.2.142
Move .
Step 5.2.143
Move .
Step 5.2.144
Reorder and .
Step 5.2.145
Combine the numerators over the common denominator.
Step 5.2.146
Add and .
Step 5.2.147
Combine the numerators over the common denominator.
Step 5.2.148
Add and .
Step 6
Split the single integral into multiple integrals.
Step 7
Since is constant with respect to , move out of the integral.
Step 8
Factor out .
Step 9
Using the Pythagorean Identity, rewrite as .
Step 10
Step 10.1
Let . Find .
Step 10.1.1
Differentiate .
Step 10.1.2
The derivative of with respect to is .
Step 10.2
Rewrite the problem using and .
Step 11
Split the single integral into multiple integrals.
Step 12
Apply the constant rule.
Step 13
Since is constant with respect to , move out of the integral.
Step 14
By the Power Rule, the integral of with respect to is .
Step 15
Combine and .
Step 16
Since is constant with respect to , move out of the integral.
Step 17
Use the half-angle formula to rewrite as .
Step 18
Since is constant with respect to , move out of the integral.
Step 19
Step 19.1
Multiply by .
Step 19.2
Multiply by .
Step 20
Split the single integral into multiple integrals.
Step 21
Apply the constant rule.
Step 22
Step 22.1
Let . Find .
Step 22.1.1
Differentiate .
Step 22.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 22.1.3
Differentiate using the Power Rule which states that is where .
Step 22.1.4
Multiply by .
Step 22.2
Rewrite the problem using and .
Step 23
Combine and .
Step 24
Since is constant with respect to , move out of the integral.
Step 25
The integral of with respect to is .
Step 26
Apply the constant rule.
Step 27
Combine and .
Step 28
Since is constant with respect to , move out of the integral.
Step 29
The integral of with respect to is .
Step 30
Step 30.1
Simplify.
Step 30.2
Simplify.
Step 30.2.1
To write as a fraction with a common denominator, multiply by .
Step 30.2.2
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 30.2.2.1
Multiply by .
Step 30.2.2.2
Multiply by .
Step 30.2.3
Combine the numerators over the common denominator.
Step 30.2.4
Move to the left of .
Step 30.2.5
Add and .
Step 31
Step 31.1
Replace all occurrences of with .
Step 31.2
Replace all occurrences of with .
Step 31.3
Replace all occurrences of with .
Step 31.4
Replace all occurrences of with .
Step 32
Step 32.1
Combine the numerators over the common denominator.
Step 32.2
Add and .
Step 32.3
Simplify each term.
Step 32.3.1
Cancel the common factor of and .
Step 32.3.1.1
Factor out of .
Step 32.3.1.2
Cancel the common factors.
Step 32.3.1.2.1
Factor out of .
Step 32.3.1.2.2
Cancel the common factor.
Step 32.3.1.2.3
Rewrite the expression.
Step 32.3.2
Move the negative in front of the fraction.
Step 32.3.3
Cancel the common factor of and .
Step 32.3.3.1
Factor out of .
Step 32.3.3.2
Cancel the common factors.
Step 32.3.3.2.1
Factor out of .
Step 32.3.3.2.2
Cancel the common factor.
Step 32.3.3.2.3
Rewrite the expression.
Step 32.3.4
Multiply by .
Step 32.4
Apply the distributive property.
Step 32.5
Simplify.
Step 32.5.1
Multiply .
Step 32.5.1.1
Multiply by .
Step 32.5.1.2
Multiply by .
Step 32.5.2
Multiply .
Step 32.5.2.1
Multiply by .
Step 32.5.2.2
Multiply by .
Step 32.5.3
Multiply .
Step 32.5.3.1
Multiply by .
Step 32.5.3.2
Multiply by .
Step 32.5.4
Multiply .
Step 32.5.4.1
Multiply by .
Step 32.5.4.2
Multiply by .
Step 33
Reorder terms.