Calculus Examples

Find the Local Maxima and Minima f(x)=(x+3)/(x-3)
Step 1
Find the first derivative of the function.
Tap for more steps...
Step 1.1
Differentiate using the Quotient Rule which states that is where and .
Step 1.2
Differentiate.
Tap for more steps...
Step 1.2.1
By the Sum Rule, the derivative of with respect to is .
Step 1.2.2
Differentiate using the Power Rule which states that is where .
Step 1.2.3
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.4
Simplify the expression.
Tap for more steps...
Step 1.2.4.1
Add and .
Step 1.2.4.2
Multiply by .
Step 1.2.5
By the Sum Rule, the derivative of with respect to is .
Step 1.2.6
Differentiate using the Power Rule which states that is where .
Step 1.2.7
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.8
Simplify the expression.
Tap for more steps...
Step 1.2.8.1
Add and .
Step 1.2.8.2
Multiply by .
Step 1.3
Simplify.
Tap for more steps...
Step 1.3.1
Apply the distributive property.
Step 1.3.2
Simplify the numerator.
Tap for more steps...
Step 1.3.2.1
Combine the opposite terms in .
Tap for more steps...
Step 1.3.2.1.1
Subtract from .
Step 1.3.2.1.2
Subtract from .
Step 1.3.2.2
Multiply by .
Step 1.3.2.3
Subtract from .
Step 1.3.3
Move the negative in front of the fraction.
Step 2
Find the second derivative of the function.
Tap for more steps...
Step 2.1
Differentiate using the Constant Multiple Rule.
Tap for more steps...
Step 2.1.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.1.2
Apply basic rules of exponents.
Tap for more steps...
Step 2.1.2.1
Rewrite as .
Step 2.1.2.2
Multiply the exponents in .
Tap for more steps...
Step 2.1.2.2.1
Apply the power rule and multiply exponents, .
Step 2.1.2.2.2
Multiply by .
Step 2.2
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 2.2.1
To apply the Chain Rule, set as .
Step 2.2.2
Differentiate using the Power Rule which states that is where .
Step 2.2.3
Replace all occurrences of with .
Step 2.3
Differentiate.
Tap for more steps...
Step 2.3.1
Multiply by .
Step 2.3.2
By the Sum Rule, the derivative of with respect to is .
Step 2.3.3
Differentiate using the Power Rule which states that is where .
Step 2.3.4
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.5
Simplify the expression.
Tap for more steps...
Step 2.3.5.1
Add and .
Step 2.3.5.2
Multiply by .
Step 2.4
Simplify.
Tap for more steps...
Step 2.4.1
Rewrite the expression using the negative exponent rule .
Step 2.4.2
Combine and .
Step 3
To find the local maximum and minimum values of the function, set the derivative equal to and solve.
Step 4
Since there is no value of that makes the first derivative equal to , there are no local extrema.
No Local Extrema
Step 5
No Local Extrema
Step 6