Enter a problem...
Calculus Examples
Step 1
The function can be found by finding the indefinite integral of the derivative .
Step 2
Set up the integral to solve.
Step 3
Step 3.1
Apply the distributive property.
Step 3.2
Apply the distributive property.
Step 3.3
Apply the distributive property.
Step 3.4
Reorder and .
Step 3.5
Reorder and .
Step 3.6
Raise to the power of .
Step 3.7
Raise to the power of .
Step 3.8
Use the power rule to combine exponents.
Step 3.9
Add and .
Step 3.10
Multiply by .
Step 3.11
Multiply by .
Step 3.12
Add and .
Step 4
Split the single integral into multiple integrals.
Step 5
Since is constant with respect to , move out of the integral.
Step 6
By the Power Rule, the integral of with respect to is .
Step 7
By the Power Rule, the integral of with respect to is .
Step 8
Combine and .
Step 9
Apply the constant rule.
Step 10
Step 10.1
Simplify.
Step 10.2
Reorder terms.
Step 11
The answer is the antiderivative of the function .