Calculus Examples

Solve for t P=ae^(kt)
P=aektP=aekt
Step 1
Rewrite the equation as aekt=Paekt=P.
aekt=Paekt=P
Step 2
Divide each term in aekt=Paekt=P by aa and simplify.
Tap for more steps...
Step 2.1
Divide each term in aekt=Paekt=P by aa.
aekta=Paaekta=Pa
Step 2.2
Simplify the left side.
Tap for more steps...
Step 2.2.1
Cancel the common factor of aa.
Tap for more steps...
Step 2.2.1.1
Cancel the common factor.
aekta=Pa
Step 2.2.1.2
Divide ekt by 1.
ekt=Pa
ekt=Pa
ekt=Pa
ekt=Pa
Step 3
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
ln(ekt)=ln(Pa)
Step 4
Expand the left side.
Tap for more steps...
Step 4.1
Expand ln(ekt) by moving kt outside the logarithm.
ktln(e)=ln(Pa)
Step 4.2
The natural logarithm of e is 1.
kt1=ln(Pa)
Step 4.3
Multiply k by 1.
kt=ln(Pa)
kt=ln(Pa)
Step 5
Divide each term in kt=ln(Pa) by k and simplify.
Tap for more steps...
Step 5.1
Divide each term in kt=ln(Pa) by k.
ktk=ln(Pa)k
Step 5.2
Simplify the left side.
Tap for more steps...
Step 5.2.1
Cancel the common factor of k.
Tap for more steps...
Step 5.2.1.1
Cancel the common factor.
ktk=ln(Pa)k
Step 5.2.1.2
Divide t by 1.
t=ln(Pa)k
t=ln(Pa)k
t=ln(Pa)k
t=ln(Pa)k
 [x2  12  π  xdx ]