Enter a problem...
Calculus Examples
23x-13=023x−13=0
Step 1
Multiply both sides of the equation by 3232.
32(23x-13)=32⋅032(23x−13)=32⋅0
Step 2
Step 2.1
Simplify the left side.
Step 2.1.1
Simplify 32(23x-13)32(23x−13).
Step 2.1.1.1
Rewrite the expression using the negative exponent rule b-n=1bnb−n=1bn.
32(23⋅1x13)=32⋅032(23⋅1x13)=32⋅0
Step 2.1.1.2
Combine.
32⋅2⋅13x13=32⋅032⋅2⋅13x13=32⋅0
Step 2.1.1.3
Combine.
3(2⋅1)2(3x13)=32⋅03(2⋅1)2(3x13)=32⋅0
Step 2.1.1.4
Cancel the common factor.
3(2⋅1)2(3x13)=32⋅0
Step 2.1.1.5
Rewrite the expression.
2⋅12(x13)=32⋅0
Step 2.1.1.6
Cancel the common factor.
2⋅12x13=32⋅0
Step 2.1.1.7
Rewrite the expression.
1x13=32⋅0
1x13=32⋅0
1x13=32⋅0
Step 2.2
Simplify the right side.
Step 2.2.1
Multiply 32 by 0.
1x13=0
1x13=0
1x13=0
Step 3
Set the numerator equal to zero.
1=0
Step 4
Since 1≠0, there are no solutions.
No solution