Calculus Examples

Find the Derivative - d/dx y=(e^(7x)+e^(-7x))/x
Step 1
Differentiate using the Quotient Rule which states that is where and .
Step 2
By the Sum Rule, the derivative of with respect to is .
Step 3
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 3.1
To apply the Chain Rule, set as .
Step 3.2
Differentiate using the Exponential Rule which states that is where =.
Step 3.3
Replace all occurrences of with .
Step 4
Differentiate.
Tap for more steps...
Step 4.1
Since is constant with respect to , the derivative of with respect to is .
Step 4.2
Differentiate using the Power Rule which states that is where .
Step 4.3
Simplify the expression.
Tap for more steps...
Step 4.3.1
Multiply by .
Step 4.3.2
Move to the left of .
Step 5
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 5.1
To apply the Chain Rule, set as .
Step 5.2
Differentiate using the Exponential Rule which states that is where =.
Step 5.3
Replace all occurrences of with .
Step 6
Differentiate.
Tap for more steps...
Step 6.1
Since is constant with respect to , the derivative of with respect to is .
Step 6.2
Differentiate using the Power Rule which states that is where .
Step 6.3
Simplify the expression.
Tap for more steps...
Step 6.3.1
Multiply by .
Step 6.3.2
Move to the left of .
Step 6.4
Differentiate using the Power Rule which states that is where .
Step 6.5
Multiply by .
Step 7
Simplify.
Tap for more steps...
Step 7.1
Apply the distributive property.
Step 7.2
Apply the distributive property.
Step 7.3
Simplify each term.
Tap for more steps...
Step 7.3.1
Rewrite using the commutative property of multiplication.
Step 7.3.2
Rewrite using the commutative property of multiplication.
Step 7.4
Reorder terms.
Step 7.5
Reorder factors in .