Enter a problem...
Calculus Examples
Step 1
Step 1.1
Let . Find .
Step 1.1.1
Differentiate .
Step 1.1.2
By the Sum Rule, the derivative of with respect to is .
Step 1.1.3
Differentiate using the Power Rule which states that is where .
Step 1.1.4
Since is constant with respect to , the derivative of with respect to is .
Step 1.1.5
Add and .
Step 1.2
Rewrite the problem using and .
Step 2
Step 2.1
Move out of the denominator by raising it to the power.
Step 2.2
Multiply the exponents in .
Step 2.2.1
Apply the power rule and multiply exponents, .
Step 2.2.2
Multiply .
Step 2.2.2.1
Combine and .
Step 2.2.2.2
Multiply by .
Step 2.2.3
Move the negative in front of the fraction.
Step 3
By the Power Rule, the integral of with respect to is .
Step 4
Step 4.1
Rewrite as .
Step 4.2
Simplify.
Step 4.2.1
Combine and .
Step 4.2.2
Move the negative in front of the fraction.
Step 5
Replace all occurrences of with .