Enter a problem...
Calculus Examples
Step 1
Use to rewrite as .
Step 2
Step 2.1
To apply the Chain Rule, set as .
Step 2.2
The derivative of with respect to is .
Step 2.3
Replace all occurrences of with .
Step 3
Step 3.1
To apply the Chain Rule, set as .
Step 3.2
Differentiate using the Power Rule which states that is where .
Step 3.3
Replace all occurrences of with .
Step 4
To write as a fraction with a common denominator, multiply by .
Step 5
Combine and .
Step 6
Combine the numerators over the common denominator.
Step 7
Step 7.1
Multiply by .
Step 7.2
Subtract from .
Step 8
Step 8.1
Move the negative in front of the fraction.
Step 8.2
Combine and .
Step 8.3
Move to the denominator using the negative exponent rule .
Step 8.4
Combine and .
Step 9
By the Sum Rule, the derivative of with respect to is .
Step 10
Since is constant with respect to , the derivative of with respect to is .
Step 11
Add and .
Step 12
Since is constant with respect to , the derivative of with respect to is .
Step 13
Differentiate using the Power Rule which states that is where .
Step 14
Step 14.1
Multiply by .
Step 14.2
Combine and .
Step 14.3
Simplify the expression.
Step 14.3.1
Move to the left of .
Step 14.3.2
Rewrite as .
Step 14.3.3
Move the negative in front of the fraction.