Calculus Examples

Evaluate the Integral integral from a to b of 5e^(4t) with respect to t
Step 1
Since is constant with respect to , move out of the integral.
Step 2
Let . Then , so . Rewrite using and .
Tap for more steps...
Step 2.1
Let . Find .
Tap for more steps...
Step 2.1.1
Differentiate .
Step 2.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 2.1.3
Differentiate using the Power Rule which states that is where .
Step 2.1.4
Multiply by .
Step 2.2
Substitute the lower limit in for in .
Step 2.3
Substitute the upper limit in for in .
Step 2.4
The values found for and will be used to evaluate the definite integral.
Step 2.5
Rewrite the problem using , , and the new limits of integration.
Step 3
Combine and .
Step 4
Since is constant with respect to , move out of the integral.
Step 5
Combine and .
Step 6
The integral of with respect to is .
Step 7
Evaluate at and at .