Enter a problem...
Calculus Examples
∫xarcsin(x)dx∫xarcsin(x)dx
Step 1
Integrate by parts using the formula ∫udv=uv-∫vdu, where u=arcsin(x) and dv=x.
arcsin(x)(12x2)-∫12x21√1-x2dx
Step 2
Step 2.1
Combine 12 and x2.
arcsin(x)x22-∫12x21√1-x2dx
Step 2.2
Combine arcsin(x) and x22.
arcsin(x)x22-∫12x21√1-x2dx
arcsin(x)x22-∫12x21√1-x2dx
Step 3
Since 12 is constant with respect to x, move 12 out of the integral.
arcsin(x)x22-(12∫x21√1-x2dx)
Step 4
Combine x2 and 1√1-x2.
arcsin(x)x22-12∫x2√1-x2dx
Step 5
Let x=sin(t), where -π2≤t≤π2. Then dx=cos(t)dt. Note that since -π2≤t≤π2, cos(t) is positive.
arcsin(x)x22-12∫sin2(t)√1-sin2(t)cos(t)dt
Step 6
Step 6.1
Simplify √1-sin2(t).
Step 6.1.1
Apply pythagorean identity.
arcsin(x)x22-12∫sin2(t)√cos2(t)cos(t)dt
Step 6.1.2
Pull terms out from under the radical, assuming positive real numbers.
arcsin(x)x22-12∫sin2(t)cos(t)cos(t)dt
arcsin(x)x22-12∫sin2(t)cos(t)cos(t)dt
Step 6.2
Cancel the common factor of cos(t).
Step 6.2.1
Cancel the common factor.
arcsin(x)x22-12∫sin2(t)cos(t)cos(t)dt
Step 6.2.2
Rewrite the expression.
arcsin(x)x22-12∫sin2(t)dt
arcsin(x)x22-12∫sin2(t)dt
arcsin(x)x22-12∫sin2(t)dt
Step 7
Use the half-angle formula to rewrite sin2(t) as 1-cos(2t)2.
arcsin(x)x22-12∫1-cos(2t)2dt
Step 8
Since 12 is constant with respect to t, move 12 out of the integral.
arcsin(x)x22-12(12∫1-cos(2t)dt)
Step 9
Step 9.1
Multiply 12 by 12.
arcsin(x)x22-12⋅2∫1-cos(2t)dt
Step 9.2
Multiply 2 by 2.
arcsin(x)x22-14∫1-cos(2t)dt
arcsin(x)x22-14∫1-cos(2t)dt
Step 10
Split the single integral into multiple integrals.
arcsin(x)x22-14(∫dt+∫-cos(2t)dt)
Step 11
Apply the constant rule.
arcsin(x)x22-14(t+C+∫-cos(2t)dt)
Step 12
Since -1 is constant with respect to t, move -1 out of the integral.
arcsin(x)x22-14(t+C-∫cos(2t)dt)
Step 13
Step 13.1
Let u=2t. Find dudt.
Step 13.1.1
Differentiate 2t.
ddt[2t]
Step 13.1.2
Since 2 is constant with respect to t, the derivative of 2t with respect to t is 2ddt[t].
2ddt[t]
Step 13.1.3
Differentiate using the Power Rule which states that ddt[tn] is ntn-1 where n=1.
2⋅1
Step 13.1.4
Multiply 2 by 1.
2
2
Step 13.2
Rewrite the problem using u and du.
arcsin(x)x22-14(t+C-∫cos(u)12du)
arcsin(x)x22-14(t+C-∫cos(u)12du)
Step 14
Combine cos(u) and 12.
arcsin(x)x22-14(t+C-∫cos(u)2du)
Step 15
Since 12 is constant with respect to u, move 12 out of the integral.
arcsin(x)x22-14(t+C-(12∫cos(u)du))
Step 16
The integral of cos(u) with respect to u is sin(u).
arcsin(x)x22-14(t+C-12(sin(u)+C))
Step 17
Simplify.
12arcsin(x)x2-14(t-12sin(u))+C
Step 18
Step 18.1
Replace all occurrences of t with arcsin(x).
12arcsin(x)x2-14(arcsin(x)-12sin(u))+C
Step 18.2
Replace all occurrences of u with 2t.
12arcsin(x)x2-14(arcsin(x)-12sin(2t))+C
Step 18.3
Replace all occurrences of t with arcsin(x).
12arcsin(x)x2-14(arcsin(x)-12sin(2arcsin(x)))+C
12arcsin(x)x2-14(arcsin(x)-12sin(2arcsin(x)))+C
Step 19
Step 19.1
Combine sin(2arcsin(x)) and 12.
12arcsin(x)x2-14(arcsin(x)-sin(2arcsin(x))2)+C
Step 19.2
Apply the distributive property.
12arcsin(x)x2-14arcsin(x)-14(-sin(2arcsin(x))2)+C
Step 19.3
Combine arcsin(x) and 14.
12arcsin(x)x2-arcsin(x)4-14(-sin(2arcsin(x))2)+C
Step 19.4
Multiply -14(-sin(2arcsin(x))2).
Step 19.4.1
Multiply -1 by -1.
12arcsin(x)x2-arcsin(x)4+1(14)sin(2arcsin(x))2+C
Step 19.4.2
Multiply 14 by 1.
12arcsin(x)x2-arcsin(x)4+14⋅sin(2arcsin(x))2+C
Step 19.4.3
Multiply 14 by sin(2arcsin(x))2.
12arcsin(x)x2-arcsin(x)4+sin(2arcsin(x))4⋅2+C
Step 19.4.4
Multiply 4 by 2.
12arcsin(x)x2-arcsin(x)4+sin(2arcsin(x))8+C
12arcsin(x)x2-arcsin(x)4+sin(2arcsin(x))8+C
Step 19.5
Combine 12 and arcsin(x).
arcsin(x)2x2-arcsin(x)4+sin(2arcsin(x))8+C
Step 19.6
Combine arcsin(x)2 and x2.
arcsin(x)x22-arcsin(x)4+sin(2arcsin(x))8+C
arcsin(x)x22-arcsin(x)4+sin(2arcsin(x))8+C
Step 20
Step 20.1
Reorder factors in arcsin(x)x22.
x2arcsin(x)2-arcsin(x)4+sin(2arcsin(x))8+C
Step 20.2
Reorder terms.
12x2arcsin(x)-14arcsin(x)+18sin(2arcsin(x))+C
12x2arcsin(x)-14arcsin(x)+18sin(2arcsin(x))+C