Enter a problem...
Calculus Examples
,
Step 1
Step 1.1
Eliminate the equal sides of each equation and combine.
Step 1.2
Solve for .
Step 1.2.1
Subtract from both sides of the equation.
Step 1.2.2
Subtract from both sides of the equation.
Step 1.2.3
Use the quadratic formula to find the solutions.
Step 1.2.4
Substitute the values , , and into the quadratic formula and solve for .
Step 1.2.5
Simplify.
Step 1.2.5.1
Simplify the numerator.
Step 1.2.5.1.1
Raise to the power of .
Step 1.2.5.1.2
Multiply .
Step 1.2.5.1.2.1
Multiply by .
Step 1.2.5.1.2.2
Multiply by .
Step 1.2.5.1.3
Add and .
Step 1.2.5.2
Multiply by .
Step 1.2.6
Simplify the expression to solve for the portion of the .
Step 1.2.6.1
Simplify the numerator.
Step 1.2.6.1.1
Raise to the power of .
Step 1.2.6.1.2
Multiply .
Step 1.2.6.1.2.1
Multiply by .
Step 1.2.6.1.2.2
Multiply by .
Step 1.2.6.1.3
Add and .
Step 1.2.6.2
Multiply by .
Step 1.2.6.3
Change the to .
Step 1.2.7
Simplify the expression to solve for the portion of the .
Step 1.2.7.1
Simplify the numerator.
Step 1.2.7.1.1
Raise to the power of .
Step 1.2.7.1.2
Multiply .
Step 1.2.7.1.2.1
Multiply by .
Step 1.2.7.1.2.2
Multiply by .
Step 1.2.7.1.3
Add and .
Step 1.2.7.2
Multiply by .
Step 1.2.7.3
Change the to .
Step 1.2.8
The final answer is the combination of both solutions.
Step 1.3
Evaluate when .
Step 1.3.1
Substitute for .
Step 1.3.2
Substitute for in and solve for .
Step 1.3.2.1
Remove parentheses.
Step 1.3.2.2
Remove parentheses.
Step 1.3.2.3
Simplify .
Step 1.3.2.3.1
To write as a fraction with a common denominator, multiply by .
Step 1.3.2.3.2
Combine fractions.
Step 1.3.2.3.2.1
Combine and .
Step 1.3.2.3.2.2
Combine the numerators over the common denominator.
Step 1.3.2.3.3
Simplify the numerator.
Step 1.3.2.3.3.1
Multiply by .
Step 1.3.2.3.3.2
Add and .
Step 1.4
Evaluate when .
Step 1.4.1
Substitute for .
Step 1.4.2
Substitute for in and solve for .
Step 1.4.2.1
Remove parentheses.
Step 1.4.2.2
Remove parentheses.
Step 1.4.2.3
Simplify .
Step 1.4.2.3.1
To write as a fraction with a common denominator, multiply by .
Step 1.4.2.3.2
Combine fractions.
Step 1.4.2.3.2.1
Combine and .
Step 1.4.2.3.2.2
Combine the numerators over the common denominator.
Step 1.4.2.3.3
Simplify the numerator.
Step 1.4.2.3.3.1
Multiply by .
Step 1.4.2.3.3.2
Add and .
Step 1.5
The solution to the system is the complete set of ordered pairs that are valid solutions.
Step 2
The area of the region between the curves is defined as the integral of the upper curve minus the integral of the lower curve over each region. The regions are determined by the intersection points of the curves. This can be done algebraically or graphically.
Step 3
Step 3.1
Combine the integrals into a single integral.
Step 3.2
Multiply by .
Step 3.3
Split the single integral into multiple integrals.
Step 3.4
By the Power Rule, the integral of with respect to is .
Step 3.5
Apply the constant rule.
Step 3.6
Since is constant with respect to , move out of the integral.
Step 3.7
By the Power Rule, the integral of with respect to is .
Step 3.8
Simplify the answer.
Step 3.8.1
Simplify.
Step 3.8.1.1
Combine and .
Step 3.8.1.2
Combine and .
Step 3.8.2
Substitute and simplify.
Step 3.8.2.1
Evaluate at and at .
Step 3.8.2.2
Evaluate at and at .
Step 3.8.2.3
Simplify.
Step 3.8.2.3.1
Combine and .
Step 3.8.2.3.2
To write as a fraction with a common denominator, multiply by .
Step 3.8.2.3.3
Combine and .
Step 3.8.2.3.4
Combine the numerators over the common denominator.
Step 3.8.2.3.5
Combine and .
Step 3.8.2.3.6
Cancel the common factor of .
Step 3.8.2.3.6.1
Cancel the common factor.
Step 3.8.2.3.6.2
Rewrite the expression.
Step 3.8.2.3.7
Multiply by .
Step 3.8.2.3.8
Combine and .
Step 3.8.2.3.9
To write as a fraction with a common denominator, multiply by .
Step 3.8.2.3.10
Combine and .
Step 3.8.2.3.11
Combine the numerators over the common denominator.
Step 3.8.2.3.12
Combine and .
Step 3.8.2.3.13
Cancel the common factor of .
Step 3.8.2.3.13.1
Cancel the common factor.
Step 3.8.2.3.13.2
Rewrite the expression.
Step 3.8.2.3.14
Multiply by .
Step 3.8.2.3.15
Combine the numerators over the common denominator.
Step 3.8.3
Simplify.
Step 3.8.3.1
Combine the numerators over the common denominator.
Step 3.8.3.2
Simplify each term.
Step 3.8.3.2.1
Apply the product rule to .
Step 3.8.3.2.2
Raise to the power of .
Step 3.8.3.2.3
Rewrite as .
Step 3.8.3.2.4
Expand using the FOIL Method.
Step 3.8.3.2.4.1
Apply the distributive property.
Step 3.8.3.2.4.2
Apply the distributive property.
Step 3.8.3.2.4.3
Apply the distributive property.
Step 3.8.3.2.5
Simplify and combine like terms.
Step 3.8.3.2.5.1
Simplify each term.
Step 3.8.3.2.5.1.1
Multiply by .
Step 3.8.3.2.5.1.2
Multiply by .
Step 3.8.3.2.5.1.3
Multiply by .
Step 3.8.3.2.5.1.4
Combine using the product rule for radicals.
Step 3.8.3.2.5.1.5
Multiply by .
Step 3.8.3.2.5.1.6
Rewrite as .
Step 3.8.3.2.5.1.7
Pull terms out from under the radical, assuming positive real numbers.
Step 3.8.3.2.5.2
Add and .
Step 3.8.3.2.5.3
Add and .
Step 3.8.3.2.6
Cancel the common factor of and .
Step 3.8.3.2.6.1
Factor out of .
Step 3.8.3.2.6.2
Factor out of .
Step 3.8.3.2.6.3
Factor out of .
Step 3.8.3.2.6.4
Cancel the common factors.
Step 3.8.3.2.6.4.1
Factor out of .
Step 3.8.3.2.6.4.2
Cancel the common factor.
Step 3.8.3.2.6.4.3
Rewrite the expression.
Step 3.8.3.2.7
Apply the distributive property.
Step 3.8.3.2.8
Multiply by .
Step 3.8.3.2.9
Simplify each term.
Step 3.8.3.2.9.1
Apply the product rule to .
Step 3.8.3.2.9.2
Raise to the power of .
Step 3.8.3.2.9.3
Rewrite as .
Step 3.8.3.2.9.4
Expand using the FOIL Method.
Step 3.8.3.2.9.4.1
Apply the distributive property.
Step 3.8.3.2.9.4.2
Apply the distributive property.
Step 3.8.3.2.9.4.3
Apply the distributive property.
Step 3.8.3.2.9.5
Simplify and combine like terms.
Step 3.8.3.2.9.5.1
Simplify each term.
Step 3.8.3.2.9.5.1.1
Multiply by .
Step 3.8.3.2.9.5.1.2
Multiply by .
Step 3.8.3.2.9.5.1.3
Multiply by .
Step 3.8.3.2.9.5.1.4
Multiply .
Step 3.8.3.2.9.5.1.4.1
Multiply by .
Step 3.8.3.2.9.5.1.4.2
Multiply by .
Step 3.8.3.2.9.5.1.4.3
Raise to the power of .
Step 3.8.3.2.9.5.1.4.4
Raise to the power of .
Step 3.8.3.2.9.5.1.4.5
Use the power rule to combine exponents.
Step 3.8.3.2.9.5.1.4.6
Add and .
Step 3.8.3.2.9.5.1.5
Rewrite as .
Step 3.8.3.2.9.5.1.5.1
Use to rewrite as .
Step 3.8.3.2.9.5.1.5.2
Apply the power rule and multiply exponents, .
Step 3.8.3.2.9.5.1.5.3
Combine and .
Step 3.8.3.2.9.5.1.5.4
Cancel the common factor of .
Step 3.8.3.2.9.5.1.5.4.1
Cancel the common factor.
Step 3.8.3.2.9.5.1.5.4.2
Rewrite the expression.
Step 3.8.3.2.9.5.1.5.5
Evaluate the exponent.
Step 3.8.3.2.9.5.2
Add and .
Step 3.8.3.2.9.5.3
Subtract from .
Step 3.8.3.2.9.6
Cancel the common factor of and .
Step 3.8.3.2.9.6.1
Factor out of .
Step 3.8.3.2.9.6.2
Factor out of .
Step 3.8.3.2.9.6.3
Factor out of .
Step 3.8.3.2.9.6.4
Cancel the common factors.
Step 3.8.3.2.9.6.4.1
Factor out of .
Step 3.8.3.2.9.6.4.2
Cancel the common factor.
Step 3.8.3.2.9.6.4.3
Rewrite the expression.
Step 3.8.3.2.9.7
Apply the distributive property.
Step 3.8.3.2.9.8
Multiply by .
Step 3.8.3.2.9.9
Multiply by .
Step 3.8.3.2.10
To write as a fraction with a common denominator, multiply by .
Step 3.8.3.2.11
Combine and .
Step 3.8.3.2.12
Combine the numerators over the common denominator.
Step 3.8.3.2.13
Multiply by .
Step 3.8.3.2.14
Add and .
Step 3.8.3.2.15
To write as a fraction with a common denominator, multiply by .
Step 3.8.3.2.16
Combine and .
Step 3.8.3.2.17
Combine the numerators over the common denominator.
Step 3.8.3.2.18
Simplify the numerator.
Step 3.8.3.2.18.1
Multiply by .
Step 3.8.3.2.18.2
Subtract from .
Step 3.8.3.3
Combine the numerators over the common denominator.
Step 3.8.3.4
Simplify each term.
Step 3.8.3.4.1
Apply the distributive property.
Step 3.8.3.4.2
Multiply by .
Step 3.8.3.4.3
Multiply by .
Step 3.8.3.5
Subtract from .
Step 3.8.3.6
Add and .
Step 3.8.3.7
Cancel the common factor of and .
Step 3.8.3.7.1
Factor out of .
Step 3.8.3.7.2
Factor out of .
Step 3.8.3.7.3
Factor out of .
Step 3.8.3.7.4
Cancel the common factors.
Step 3.8.3.7.4.1
Factor out of .
Step 3.8.3.7.4.2
Cancel the common factor.
Step 3.8.3.7.4.3
Rewrite the expression.
Step 3.8.3.7.4.4
Divide by .
Step 3.8.3.8
Subtract from .
Step 3.8.3.9
Add and .
Step 3.8.3.10
Add and .
Step 3.8.3.11
Simplify each term.
Step 3.8.3.11.1
Apply the product rule to .
Step 3.8.3.11.2
Raise to the power of .
Step 3.8.3.11.3
Use the Binomial Theorem.
Step 3.8.3.11.4
Simplify each term.
Step 3.8.3.11.4.1
One to any power is one.
Step 3.8.3.11.4.2
One to any power is one.
Step 3.8.3.11.4.3
Multiply by .
Step 3.8.3.11.4.4
Multiply by .
Step 3.8.3.11.4.5
Rewrite as .
Step 3.8.3.11.4.5.1
Use to rewrite as .
Step 3.8.3.11.4.5.2
Apply the power rule and multiply exponents, .
Step 3.8.3.11.4.5.3
Combine and .
Step 3.8.3.11.4.5.4
Cancel the common factor of .
Step 3.8.3.11.4.5.4.1
Cancel the common factor.
Step 3.8.3.11.4.5.4.2
Rewrite the expression.
Step 3.8.3.11.4.5.5
Evaluate the exponent.
Step 3.8.3.11.4.6
Multiply by .
Step 3.8.3.11.4.7
Rewrite as .
Step 3.8.3.11.4.8
Raise to the power of .
Step 3.8.3.11.4.9
Rewrite as .
Step 3.8.3.11.4.9.1
Factor out of .
Step 3.8.3.11.4.9.2
Rewrite as .
Step 3.8.3.11.4.10
Pull terms out from under the radical.
Step 3.8.3.11.5
Add and .
Step 3.8.3.11.6
Add and .
Step 3.8.3.11.7
Cancel the common factor of and .
Step 3.8.3.11.7.1
Factor out of .
Step 3.8.3.11.7.2
Factor out of .
Step 3.8.3.11.7.3
Factor out of .
Step 3.8.3.11.7.4
Cancel the common factors.
Step 3.8.3.11.7.4.1
Factor out of .
Step 3.8.3.11.7.4.2
Cancel the common factor.
Step 3.8.3.11.7.4.3
Rewrite the expression.
Step 3.8.3.11.7.4.4
Divide by .
Step 3.8.3.11.8
Apply the product rule to .
Step 3.8.3.11.9
Raise to the power of .
Step 3.8.3.11.10
Use the Binomial Theorem.
Step 3.8.3.11.11
Simplify each term.
Step 3.8.3.11.11.1
One to any power is one.
Step 3.8.3.11.11.2
One to any power is one.
Step 3.8.3.11.11.3
Multiply by .
Step 3.8.3.11.11.4
Multiply by .
Step 3.8.3.11.11.5
Multiply by .
Step 3.8.3.11.11.6
Apply the product rule to .
Step 3.8.3.11.11.7
Raise to the power of .
Step 3.8.3.11.11.8
Multiply by .
Step 3.8.3.11.11.9
Rewrite as .
Step 3.8.3.11.11.9.1
Use to rewrite as .
Step 3.8.3.11.11.9.2
Apply the power rule and multiply exponents, .
Step 3.8.3.11.11.9.3
Combine and .
Step 3.8.3.11.11.9.4
Cancel the common factor of .
Step 3.8.3.11.11.9.4.1
Cancel the common factor.
Step 3.8.3.11.11.9.4.2
Rewrite the expression.
Step 3.8.3.11.11.9.5
Evaluate the exponent.
Step 3.8.3.11.11.10
Multiply by .
Step 3.8.3.11.11.11
Apply the product rule to .
Step 3.8.3.11.11.12
Raise to the power of .
Step 3.8.3.11.11.13
Rewrite as .
Step 3.8.3.11.11.14
Raise to the power of .
Step 3.8.3.11.11.15
Rewrite as .
Step 3.8.3.11.11.15.1
Factor out of .
Step 3.8.3.11.11.15.2
Rewrite as .
Step 3.8.3.11.11.16
Pull terms out from under the radical.
Step 3.8.3.11.11.17
Multiply by .
Step 3.8.3.11.12
Add and .
Step 3.8.3.11.13
Subtract from .
Step 3.8.3.11.14
Cancel the common factor of and .
Step 3.8.3.11.14.1
Factor out of .
Step 3.8.3.11.14.2
Factor out of .
Step 3.8.3.11.14.3
Factor out of .
Step 3.8.3.11.14.4
Cancel the common factors.
Step 3.8.3.11.14.4.1
Factor out of .
Step 3.8.3.11.14.4.2
Cancel the common factor.
Step 3.8.3.11.14.4.3
Rewrite the expression.
Step 3.8.3.11.14.4.4
Divide by .
Step 3.8.3.11.15
Apply the distributive property.
Step 3.8.3.11.16
Multiply by .
Step 3.8.3.11.17
Multiply by .
Step 3.8.3.12
Subtract from .
Step 3.8.3.13
Add and .
Step 3.8.3.14
Add and .
Step 3.8.3.15
Multiply by .
Step 3.8.3.16
Move the negative in front of the fraction.
Step 3.8.3.17
To write as a fraction with a common denominator, multiply by .
Step 3.8.3.18
To write as a fraction with a common denominator, multiply by .
Step 3.8.3.19
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 3.8.3.19.1
Multiply by .
Step 3.8.3.19.2
Multiply by .
Step 3.8.3.19.3
Multiply by .
Step 3.8.3.19.4
Multiply by .
Step 3.8.3.20
Combine the numerators over the common denominator.
Step 3.8.3.21
Simplify the numerator.
Step 3.8.3.21.1
Multiply by .
Step 3.8.3.21.2
Multiply by .
Step 3.8.3.21.3
Subtract from .
Step 4
The result can be shown in multiple forms.
Exact Form:
Decimal Form:
Step 5