Enter a problem...
Calculus Examples
Step 1
Step 1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.2
Differentiate using the Power Rule which states that is where .
Step 2
Step 2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2
Differentiate using the Power Rule which states that is where .
Step 2.3
To write as a fraction with a common denominator, multiply by .
Step 2.4
Combine and .
Step 2.5
Combine the numerators over the common denominator.
Step 2.6
Simplify the numerator.
Step 2.6.1
Multiply by .
Step 2.6.2
Subtract from .
Step 2.7
Move the negative in front of the fraction.
Step 2.8
Combine and .
Step 2.9
Combine and .
Step 2.10
Move to the denominator using the negative exponent rule .
Step 2.11
Factor out of .
Step 2.12
Cancel the common factors.
Step 2.12.1
Factor out of .
Step 2.12.2
Cancel the common factor.
Step 2.12.3
Rewrite the expression.
Step 2.13
Move the negative in front of the fraction.