Calculus Examples

Graph natural log of tan(x)
ln(tan(x))
Step 1
Find the asymptotes.
Tap for more steps...
Step 1.1
For any y=tan(x), vertical asymptotes occur at x=π2+nπ, where n is an integer. Use the basic period for y=tan(x), (-π2,π2), to find the vertical asymptotes for y=ln(tan(x)). Set the inside of the tangent function, bx+c, for y=atan(bx+c)+d equal to -π2 to find where the vertical asymptote occurs for y=ln(tan(x)).
tan(x)=-π2
Step 1.2
Solve for x.
Tap for more steps...
Step 1.2.1
Take the inverse tangent of both sides of the equation to extract x from inside the tangent.
x=arctan(-π2)
Step 1.2.2
Simplify the right side.
Tap for more steps...
Step 1.2.2.1
Evaluate arctan(-π2).
x=-1.00388482
x=-1.00388482
Step 1.2.3
The tangent function is negative in the second and fourth quadrants. To find the second solution, subtract the reference angle from π to find the solution in the third quadrant.
x=-1.00388482-(3.14159265)
Step 1.2.4
Simplify the expression to find the second solution.
Tap for more steps...
Step 1.2.4.1
Add 2π to -1.00388482-(3.14159265).
x=-1.00388482-(3.14159265)+2π
Step 1.2.4.2
The resulting angle of 2.13770783 is positive and coterminal with -1.00388482-(3.14159265).
x=2.13770783
x=2.13770783
Step 1.2.5
Find the period of tan(x).
Tap for more steps...
Step 1.2.5.1
The period of the function can be calculated using π|b|.
π|b|
Step 1.2.5.2
Replace b with 1 in the formula for period.
π|1|
Step 1.2.5.3
The absolute value is the distance between a number and zero. The distance between 0 and 1 is 1.
π1
Step 1.2.5.4
Divide π by 1.
π
π
Step 1.2.6
Add π to every negative angle to get positive angles.
Tap for more steps...
Step 1.2.6.1
Add π to -1.00388482 to find the positive angle.
-1.00388482+π
Step 1.2.6.2
Replace with decimal approximation.
3.14159265-1.00388482
Step 1.2.6.3
Subtract 1.00388482 from 3.14159265.
2.13770783
Step 1.2.6.4
List the new angles.
x=2.13770783
x=2.13770783
Step 1.2.7
The period of the tan(x) function is π so values will repeat every π radians in both directions.
x=2.13770783+πn,2.13770783+πn, for any integer n
Step 1.2.8
Consolidate 2.13770783+πn and 2.13770783+πn to 2.13770783+πn.
x=2.13770783+πn, for any integer n
x=2.13770783+πn, for any integer n
Step 1.3
Set the inside of the tangent function tan(x) equal to π2.
tan(x)=π2
Step 1.4
Solve for x.
Tap for more steps...
Step 1.4.1
Take the inverse tangent of both sides of the equation to extract x from inside the tangent.
x=arctan(π2)
Step 1.4.2
Simplify the right side.
Tap for more steps...
Step 1.4.2.1
Evaluate arctan(π2).
x=1.00388482
x=1.00388482
Step 1.4.3
The tangent function is positive in the first and third quadrants. To find the second solution, add the reference angle from π to find the solution in the fourth quadrant.
x=(3.14159265)+1.00388482
Step 1.4.4
Solve for x.
Tap for more steps...
Step 1.4.4.1
Remove parentheses.
x=3.14159265+1.00388482
Step 1.4.4.2
Remove parentheses.
x=(3.14159265)+1.00388482
Step 1.4.4.3
Add 3.14159265 and 1.00388482.
x=4.14547747
x=4.14547747
Step 1.4.5
Find the period of tan(x).
Tap for more steps...
Step 1.4.5.1
The period of the function can be calculated using π|b|.
π|b|
Step 1.4.5.2
Replace b with 1 in the formula for period.
π|1|
Step 1.4.5.3
The absolute value is the distance between a number and zero. The distance between 0 and 1 is 1.
π1
Step 1.4.5.4
Divide π by 1.
π
π
Step 1.4.6
The period of the tan(x) function is π so values will repeat every π radians in both directions.
x=1.00388482+πn,4.14547747+πn, for any integer n
Step 1.4.7
Consolidate 1.00388482+πn and 4.14547747+πn to 1.00388482+πn.
x=1.00388482+πn, for any integer n
x=1.00388482+πn, for any integer n
Step 1.5
The basic period for y=ln(tan(x)) will occur at (2.13770783+πn,1.00388482+πn), where 2.13770783+πn and 1.00388482+πn are vertical asymptotes.
(2.13770783+πn,1.00388482+πn)
Step 1.6
Find the period π|b| to find where the vertical asymptotes exist.
Tap for more steps...
Step 1.6.1
The absolute value is the distance between a number and zero. The distance between 0 and 1 is 1.
π1
Step 1.6.2
Divide π by 1.
π
π
Step 1.7
The vertical asymptotes for y=ln(tan(x)) occur at 2.13770783+πn, 1.00388482+πn , and every πn, where n is an integer.
πn
Step 1.8
There are only vertical asymptotes for tangent and cotangent functions.
Vertical Asymptotes: x=2.13770783+πn+πn for any integer n
No Horizontal Asymptotes
No Oblique Asymptotes
Vertical Asymptotes: x=2.13770783+πn+πn for any integer n
No Horizontal Asymptotes
No Oblique Asymptotes
Step 2
Find the point at x=1.
Tap for more steps...
Step 2.1
Replace the variable x with 1 in the expression.
f(1)=ln(tan(1))
Step 2.2
Simplify the result.
Tap for more steps...
Step 2.2.1
Evaluate tan(1).
f(1)=ln(1.55740772)
Step 2.2.2
The final answer is ln(1.55740772).
ln(1.55740772)
ln(1.55740772)
ln(1.55740772)
Step 3
Find the point at x=4.
Tap for more steps...
Step 3.1
Replace the variable x with 4 in the expression.
f(4)=ln(tan(4))
Step 3.2
Simplify the result.
Tap for more steps...
Step 3.2.1
Evaluate tan(4).
f(4)=ln(1.15782128)
Step 3.2.2
The final answer is ln(1.15782128).
ln(1.15782128)
ln(1.15782128)
ln(1.15782128)
Step 4
Find the point at x=7.
Tap for more steps...
Step 4.1
Replace the variable x with 7 in the expression.
f(7)=ln(tan(7))
Step 4.2
Simplify the result.
Tap for more steps...
Step 4.2.1
Evaluate tan(7).
f(7)=ln(0.87144798)
Step 4.2.2
The final answer is ln(0.87144798).
ln(0.87144798)
ln(0.87144798)
ln(0.87144798)
Step 5
The log function can be graphed using the vertical asymptote at x=2.13770783+πn+πn(for)(any)(integer)n and the points (1,0.44302272),(4,0.14654003),(7,-0.1375991).
Vertical Asymptote: x=2.13770783+πn+πn(for)(any)(integer)n
xy10.44340.1477-0.138
Step 6
 [x2  12  π  xdx ]