Calculus Examples

Evaluate the Limit limit as x approaches 81 of ( square root of x-9)/(x-81)
limx81x-9x-81limx81x9x81
Step 1
Apply L'Hospital's rule.
Tap for more steps...
Step 1.1
Evaluate the limit of the numerator and the limit of the denominator.
Tap for more steps...
Step 1.1.1
Take the limit of the numerator and the limit of the denominator.
limx81x-9limx81x-81limx81x9limx81x81
Step 1.1.2
Evaluate the limit of the numerator.
Tap for more steps...
Step 1.1.2.1
Evaluate the limit.
Tap for more steps...
Step 1.1.2.1.1
Split the limit using the Sum of Limits Rule on the limit as xx approaches 8181.
limx81x-limx819limx81x-81limx81xlimx819limx81x81
Step 1.1.2.1.2
Move the limit under the radical sign.
limx81x-limx819limx81x-81limx81xlimx819limx81x81
Step 1.1.2.1.3
Evaluate the limit of 99 which is constant as xx approaches 8181.
limx81x-19limx81x-81limx81x19limx81x81
limx81x-19limx81x-81limx81x19limx81x81
Step 1.1.2.2
Evaluate the limit of xx by plugging in 8181 for xx.
81-19limx81x-818119limx81x81
Step 1.1.2.3
Simplify the answer.
Tap for more steps...
Step 1.1.2.3.1
Simplify each term.
Tap for more steps...
Step 1.1.2.3.1.1
Rewrite 8181 as 9292.
92-19limx81x-819219limx81x81
Step 1.1.2.3.1.2
Pull terms out from under the radical, assuming positive real numbers.
9-19limx81x-81919limx81x81
Step 1.1.2.3.1.3
Multiply -11 by 99.
9-9limx81x-8199limx81x81
9-9limx81x-8199limx81x81
Step 1.1.2.3.2
Subtract 99 from 99.
0limx81x-810limx81x81
0limx81x-810limx81x81
0limx81x-810limx81x81
Step 1.1.3
Evaluate the limit of the denominator.
Tap for more steps...
Step 1.1.3.1
Evaluate the limit.
Tap for more steps...
Step 1.1.3.1.1
Split the limit using the Sum of Limits Rule on the limit as xx approaches 8181.
0limx81x-limx81810limx81xlimx8181
Step 1.1.3.1.2
Evaluate the limit of 8181 which is constant as xx approaches 8181.
0limx81x-1810limx81x181
0limx81x-1810limx81x181
Step 1.1.3.2
Evaluate the limit of xx by plugging in 8181 for xx.
081-181081181
Step 1.1.3.3
Simplify the answer.
Tap for more steps...
Step 1.1.3.3.1
Multiply -11 by 8181.
081-8108181
Step 1.1.3.3.2
Subtract 8181 from 8181.
0000
Step 1.1.3.3.3
The expression contains a division by 00. The expression is undefined.
Undefined
0000
Step 1.1.3.4
The expression contains a division by 00. The expression is undefined.
Undefined
0000
Step 1.1.4
The expression contains a division by 00. The expression is undefined.
Undefined
0000
Step 1.2
Since 0000 is of indeterminate form, apply L'Hospital's Rule. L'Hospital's Rule states that the limit of a quotient of functions is equal to the limit of the quotient of their derivatives.
limx81x-9x-81=limx81ddx[x-9]ddx[x-81]limx81x9x81=limx81ddx[x9]ddx[x81]
Step 1.3
Find the derivative of the numerator and denominator.
Tap for more steps...
Step 1.3.1
Differentiate the numerator and denominator.
limx81ddx[x-9]ddx[x-81]limx81ddx[x9]ddx[x81]
Step 1.3.2
By the Sum Rule, the derivative of x-9x9 with respect to xx is ddx[x]+ddx[-9]ddx[x]+ddx[9].
limx81ddx[x]+ddx[-9]ddx[x-81]limx81ddx[x]+ddx[9]ddx[x81]
Step 1.3.3
Evaluate ddx[x]ddx[x].
Tap for more steps...
Step 1.3.3.1
Use nax=axnnax=axn to rewrite xx as x12x12.
limx81ddx[x12]+ddx[-9]ddx[x-81]limx81ddx[x12]+ddx[9]ddx[x81]
Step 1.3.3.2
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn1 where n=12n=12.
limx8112x12-1+ddx[-9]ddx[x-81]limx8112x121+ddx[9]ddx[x81]
Step 1.3.3.3
To write -11 as a fraction with a common denominator, multiply by 2222.
limx8112x12-122+ddx[-9]ddx[x-81]limx8112x12122+ddx[9]ddx[x81]
Step 1.3.3.4
Combine -11 and 2222.
limx8112x12+-122+ddx[-9]ddx[x-81]limx8112x12+122+ddx[9]ddx[x81]
Step 1.3.3.5
Combine the numerators over the common denominator.
limx8112x1-122+ddx[-9]ddx[x-81]limx8112x1122+ddx[9]ddx[x81]
Step 1.3.3.6
Simplify the numerator.
Tap for more steps...
Step 1.3.3.6.1
Multiply -11 by 22.
limx8112x1-22+ddx[-9]ddx[x-81]limx8112x122+ddx[9]ddx[x81]
Step 1.3.3.6.2
Subtract 22 from 11.
limx8112x-12+ddx[-9]ddx[x-81]limx8112x12+ddx[9]ddx[x81]
limx8112x-12+ddx[-9]ddx[x-81]limx8112x12+ddx[9]ddx[x81]
Step 1.3.3.7
Move the negative in front of the fraction.
limx8112x-12+ddx[-9]ddx[x-81]limx8112x12+ddx[9]ddx[x81]
limx8112x-12+ddx[-9]ddx[x-81]limx8112x12+ddx[9]ddx[x81]
Step 1.3.4
Since -99 is constant with respect to xx, the derivative of -99 with respect to xx is 00.
limx8112x-12+0ddx[x-81]limx8112x12+0ddx[x81]
Step 1.3.5
Simplify.
Tap for more steps...
Step 1.3.5.1
Rewrite the expression using the negative exponent rule b-n=1bnbn=1bn.
limx81121x12+0ddx[x-81]limx81121x12+0ddx[x81]
Step 1.3.5.2
Combine terms.
Tap for more steps...
Step 1.3.5.2.1
Multiply 1212 by 1x121x12.
limx8112x12+0ddx[x-81]limx8112x12+0ddx[x81]
Step 1.3.5.2.2
Add 12x1212x12 and 00.
limx8112x12ddx[x-81]limx8112x12ddx[x81]
limx8112x12ddx[x-81]limx8112x12ddx[x81]
limx8112x12ddx[x-81]limx8112x12ddx[x81]
Step 1.3.6
By the Sum Rule, the derivative of x-81x81 with respect to xx is ddx[x]+ddx[-81]ddx[x]+ddx[81].
limx8112x12ddx[x]+ddx[-81]limx8112x12ddx[x]+ddx[81]
Step 1.3.7
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn1 where n=1n=1.
limx8112x121+ddx[-81]limx8112x121+ddx[81]
Step 1.3.8
Since -8181 is constant with respect to xx, the derivative of -8181 with respect to xx is 00.
limx8112x121+0limx8112x121+0
Step 1.3.9
Add 11 and 00.
limx8112x121limx8112x121
limx8112x121
Step 1.4
Multiply the numerator by the reciprocal of the denominator.
limx8112x121
Step 1.5
Rewrite x12 as x.
limx8112x1
Step 1.6
Multiply 12x by 1.
limx8112x
limx8112x
Step 2
Evaluate the limit.
Tap for more steps...
Step 2.1
Move the term 12 outside of the limit because it is constant with respect to x.
12limx811x
Step 2.2
Split the limit using the Limits Quotient Rule on the limit as x approaches 81.
12limx811limx81x
Step 2.3
Evaluate the limit of 1 which is constant as x approaches 81.
121limx81x
Step 2.4
Move the limit under the radical sign.
121limx81x
121limx81x
Step 3
Evaluate the limit of x by plugging in 81 for x.
12181
Step 4
Simplify the answer.
Tap for more steps...
Step 4.1
Simplify the denominator.
Tap for more steps...
Step 4.1.1
Rewrite 81 as 92.
12192
Step 4.1.2
Pull terms out from under the radical, assuming positive real numbers.
1219
1219
Step 4.2
Multiply 1219.
Tap for more steps...
Step 4.2.1
Multiply 12 by 19.
129
Step 4.2.2
Multiply 2 by 9.
118
118
118
Step 5
The result can be shown in multiple forms.
Exact Form:
118
Decimal Form:
0.05
 [x2  12  π  xdx ]