Enter a problem...
Calculus Examples
20∑i=1(i-1)2
Step 1
Step 1.1
Rewrite (i-1)2 as (i-1)(i-1).
(i-1)(i-1)
Step 1.2
Expand (i-1)(i-1) using the FOIL Method.
Step 1.2.1
Apply the distributive property.
i(i-1)-1(i-1)
Step 1.2.2
Apply the distributive property.
i⋅i+i⋅-1-1(i-1)
Step 1.2.3
Apply the distributive property.
i⋅i+i⋅-1-1i-1⋅-1
i⋅i+i⋅-1-1i-1⋅-1
Step 1.3
Simplify and combine like terms.
Step 1.3.1
Simplify each term.
Step 1.3.1.1
Multiply i by i.
i2+i⋅-1-1i-1⋅-1
Step 1.3.1.2
Move -1 to the left of i.
i2-1⋅i-1i-1⋅-1
Step 1.3.1.3
Rewrite -1i as -i.
i2-i-1i-1⋅-1
Step 1.3.1.4
Rewrite -1i as -i.
i2-i-i-1⋅-1
Step 1.3.1.5
Multiply -1 by -1.
i2-i-i+1
i2-i-i+1
Step 1.3.2
Subtract i from -i.
i2-2i+1
i2-2i+1
Step 1.4
Rewrite the summation.
20∑i=1i2-2i+1
20∑i=1i2-2i+1
Step 2
Split the summation into smaller summations that fit the summation rules.
20∑i=1i2-2i+1=20∑i=1i2-220∑i=1i+20∑i=11
Step 3
Step 3.1
The formula for the summation of a polynomial with degree 2 is:
n∑k=1i2=n(n+1)(2n+1)6
Step 3.2
Substitute the values into the formula.
20(20+1)(2⋅20+1)6
Step 3.3
Simplify.
Step 3.3.1
Cancel the common factor of 20 and 6.
Step 3.3.1.1
Factor 2 out of 20(20+1)(2⋅20+1).
2(10(20+1)(2⋅20+1))6
Step 3.3.1.2
Cancel the common factors.
Step 3.3.1.2.1
Factor 2 out of 6.
2(10(20+1)(2⋅20+1))2(3)
Step 3.3.1.2.2
Cancel the common factor.
2(10(20+1)(2⋅20+1))2⋅3
Step 3.3.1.2.3
Rewrite the expression.
10(20+1)(2⋅20+1)3
10(20+1)(2⋅20+1)3
10(20+1)(2⋅20+1)3
Step 3.3.2
Simplify the numerator.
Step 3.3.2.1
Multiply 2 by 20.
10(20+1)(40+1)3
Step 3.3.2.2
Add 20 and 1.
10⋅21(40+1)3
Step 3.3.2.3
Multiply 10 by 21.
210(40+1)3
Step 3.3.2.4
Add 40 and 1.
210⋅413
210⋅413
Step 3.3.3
Simplify the expression.
Step 3.3.3.1
Multiply 210 by 41.
86103
Step 3.3.3.2
Divide 8610 by 3.
2870
2870
2870
2870
Step 4
Step 4.1
The formula for the summation of a polynomial with degree 1 is:
n∑k=1i=n(n+1)2
Step 4.2
Substitute the values into the formula and make sure to multiply by the front term.
(-2)(20(20+1)2)
Step 4.3
Simplify.
Step 4.3.1
Simplify the expression.
Step 4.3.1.1
Add 20 and 1.
-220⋅212
Step 4.3.1.2
Multiply 20 by 21.
-2(4202)
-2(4202)
Step 4.3.2
Cancel the common factor of 2.
Step 4.3.2.1
Factor 2 out of -2.
2(-1)4202
Step 4.3.2.2
Cancel the common factor.
2⋅-14202
Step 4.3.2.3
Rewrite the expression.
-1⋅420
-1⋅420
Step 4.3.3
Multiply -1 by 420.
-420
-420
-420
Step 5
Step 5.1
The formula for the summation of a constant is:
n∑k=1c=cn
Step 5.2
Substitute the values into the formula.
(1)(20)
Step 5.3
Multiply 20 by 1.
20
20
Step 6
Add the results of the summations.
2870-420+20
Step 7
Step 7.1
Subtract 420 from 2870.
2450+20
Step 7.2
Add 2450 and 20.
2470
2470