Calculus Examples

Evaluate the Summation sum from i=1 to 20 of (i-1)^2
20i=1(i-1)2
Step 1
Simplify the summation.
Tap for more steps...
Step 1.1
Rewrite (i-1)2 as (i-1)(i-1).
(i-1)(i-1)
Step 1.2
Expand (i-1)(i-1) using the FOIL Method.
Tap for more steps...
Step 1.2.1
Apply the distributive property.
i(i-1)-1(i-1)
Step 1.2.2
Apply the distributive property.
ii+i-1-1(i-1)
Step 1.2.3
Apply the distributive property.
ii+i-1-1i-1-1
ii+i-1-1i-1-1
Step 1.3
Simplify and combine like terms.
Tap for more steps...
Step 1.3.1
Simplify each term.
Tap for more steps...
Step 1.3.1.1
Multiply i by i.
i2+i-1-1i-1-1
Step 1.3.1.2
Move -1 to the left of i.
i2-1i-1i-1-1
Step 1.3.1.3
Rewrite -1i as -i.
i2-i-1i-1-1
Step 1.3.1.4
Rewrite -1i as -i.
i2-i-i-1-1
Step 1.3.1.5
Multiply -1 by -1.
i2-i-i+1
i2-i-i+1
Step 1.3.2
Subtract i from -i.
i2-2i+1
i2-2i+1
Step 1.4
Rewrite the summation.
20i=1i2-2i+1
20i=1i2-2i+1
Step 2
Split the summation into smaller summations that fit the summation rules.
20i=1i2-2i+1=20i=1i2-220i=1i+20i=11
Step 3
Evaluate 20i=1i2.
Tap for more steps...
Step 3.1
The formula for the summation of a polynomial with degree 2 is:
nk=1i2=n(n+1)(2n+1)6
Step 3.2
Substitute the values into the formula.
20(20+1)(220+1)6
Step 3.3
Simplify.
Tap for more steps...
Step 3.3.1
Cancel the common factor of 20 and 6.
Tap for more steps...
Step 3.3.1.1
Factor 2 out of 20(20+1)(220+1).
2(10(20+1)(220+1))6
Step 3.3.1.2
Cancel the common factors.
Tap for more steps...
Step 3.3.1.2.1
Factor 2 out of 6.
2(10(20+1)(220+1))2(3)
Step 3.3.1.2.2
Cancel the common factor.
2(10(20+1)(220+1))23
Step 3.3.1.2.3
Rewrite the expression.
10(20+1)(220+1)3
10(20+1)(220+1)3
10(20+1)(220+1)3
Step 3.3.2
Simplify the numerator.
Tap for more steps...
Step 3.3.2.1
Multiply 2 by 20.
10(20+1)(40+1)3
Step 3.3.2.2
Add 20 and 1.
1021(40+1)3
Step 3.3.2.3
Multiply 10 by 21.
210(40+1)3
Step 3.3.2.4
Add 40 and 1.
210413
210413
Step 3.3.3
Simplify the expression.
Tap for more steps...
Step 3.3.3.1
Multiply 210 by 41.
86103
Step 3.3.3.2
Divide 8610 by 3.
2870
2870
2870
2870
Step 4
Evaluate 220i=1i.
Tap for more steps...
Step 4.1
The formula for the summation of a polynomial with degree 1 is:
nk=1i=n(n+1)2
Step 4.2
Substitute the values into the formula and make sure to multiply by the front term.
(-2)(20(20+1)2)
Step 4.3
Simplify.
Tap for more steps...
Step 4.3.1
Simplify the expression.
Tap for more steps...
Step 4.3.1.1
Add 20 and 1.
-220212
Step 4.3.1.2
Multiply 20 by 21.
-2(4202)
-2(4202)
Step 4.3.2
Cancel the common factor of 2.
Tap for more steps...
Step 4.3.2.1
Factor 2 out of -2.
2(-1)4202
Step 4.3.2.2
Cancel the common factor.
2-14202
Step 4.3.2.3
Rewrite the expression.
-1420
-1420
Step 4.3.3
Multiply -1 by 420.
-420
-420
-420
Step 5
Evaluate 20i=11.
Tap for more steps...
Step 5.1
The formula for the summation of a constant is:
nk=1c=cn
Step 5.2
Substitute the values into the formula.
(1)(20)
Step 5.3
Multiply 20 by 1.
20
20
Step 6
Add the results of the summations.
2870-420+20
Step 7
Simplify.
Tap for more steps...
Step 7.1
Subtract 420 from 2870.
2450+20
Step 7.2
Add 2450 and 20.
2470
2470
 [x2  12  π  xdx ]