Calculus Examples

Evaluate the Integral integral of (e^t+1)^2 with respect to t
Step 1
Simplify.
Tap for more steps...
Step 1.1
Rewrite as .
Step 1.2
Expand using the FOIL Method.
Tap for more steps...
Step 1.2.1
Apply the distributive property.
Step 1.2.2
Apply the distributive property.
Step 1.2.3
Apply the distributive property.
Step 1.3
Simplify and combine like terms.
Tap for more steps...
Step 1.3.1
Simplify each term.
Tap for more steps...
Step 1.3.1.1
Multiply by by adding the exponents.
Tap for more steps...
Step 1.3.1.1.1
Use the power rule to combine exponents.
Step 1.3.1.1.2
Add and .
Step 1.3.1.2
Multiply by .
Step 1.3.1.3
Multiply by .
Step 1.3.1.4
Multiply by .
Step 1.3.2
Add and .
Step 2
Split the single integral into multiple integrals.
Step 3
Let . Then , so . Rewrite using and .
Tap for more steps...
Step 3.1
Let . Find .
Tap for more steps...
Step 3.1.1
Differentiate .
Step 3.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 3.1.3
Differentiate using the Power Rule which states that is where .
Step 3.1.4
Multiply by .
Step 3.2
Rewrite the problem using and .
Step 4
Combine and .
Step 5
Since is constant with respect to , move out of the integral.
Step 6
The integral of with respect to is .
Step 7
Since is constant with respect to , move out of the integral.
Step 8
The integral of with respect to is .
Step 9
Apply the constant rule.
Step 10
Simplify.
Step 11
Replace all occurrences of with .