Calculus Examples

Find the 2nd Derivative cos(x^2)
Step 1
Find the first derivative.
Tap for more steps...
Step 1.1
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 1.1.1
To apply the Chain Rule, set as .
Step 1.1.2
The derivative of with respect to is .
Step 1.1.3
Replace all occurrences of with .
Step 1.2
Differentiate using the Power Rule.
Tap for more steps...
Step 1.2.1
Differentiate using the Power Rule which states that is where .
Step 1.2.2
Simplify the expression.
Tap for more steps...
Step 1.2.2.1
Multiply by .
Step 1.2.2.2
Reorder the factors of .
Step 2
Find the second derivative.
Tap for more steps...
Step 2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2
Differentiate using the Product Rule which states that is where and .
Step 2.3
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 2.3.1
To apply the Chain Rule, set as .
Step 2.3.2
The derivative of with respect to is .
Step 2.3.3
Replace all occurrences of with .
Step 2.4
Differentiate using the Power Rule which states that is where .
Step 2.5
Raise to the power of .
Step 2.6
Raise to the power of .
Step 2.7
Use the power rule to combine exponents.
Step 2.8
Simplify the expression.
Tap for more steps...
Step 2.8.1
Add and .
Step 2.8.2
Move to the left of .
Step 2.9
Differentiate using the Power Rule which states that is where .
Step 2.10
Multiply by .
Step 2.11
Simplify.
Tap for more steps...
Step 2.11.1
Apply the distributive property.
Step 2.11.2
Multiply by .
Step 3
Find the third derivative.
Tap for more steps...
Step 3.1
By the Sum Rule, the derivative of with respect to is .
Step 3.2
Evaluate .
Tap for more steps...
Step 3.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.2.2
Differentiate using the Product Rule which states that is where and .
Step 3.2.3
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 3.2.3.1
To apply the Chain Rule, set as .
Step 3.2.3.2
The derivative of with respect to is .
Step 3.2.3.3
Replace all occurrences of with .
Step 3.2.4
Differentiate using the Power Rule which states that is where .
Step 3.2.5
Differentiate using the Power Rule which states that is where .
Step 3.2.6
Multiply by .
Step 3.2.7
Multiply by by adding the exponents.
Tap for more steps...
Step 3.2.7.1
Move .
Step 3.2.7.2
Multiply by .
Tap for more steps...
Step 3.2.7.2.1
Raise to the power of .
Step 3.2.7.2.2
Use the power rule to combine exponents.
Step 3.2.7.3
Add and .
Step 3.3
Evaluate .
Tap for more steps...
Step 3.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.3.2
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 3.3.2.1
To apply the Chain Rule, set as .
Step 3.3.2.2
The derivative of with respect to is .
Step 3.3.2.3
Replace all occurrences of with .
Step 3.3.3
Differentiate using the Power Rule which states that is where .
Step 3.3.4
Multiply by .
Step 3.4
Simplify.
Tap for more steps...
Step 3.4.1
Apply the distributive property.
Step 3.4.2
Combine terms.
Tap for more steps...
Step 3.4.2.1
Multiply by .
Step 3.4.2.2
Multiply by .
Step 3.4.2.3
Subtract from .
Step 3.4.3
Reorder terms.
Step 4
Find the fourth derivative.
Tap for more steps...
Step 4.1
By the Sum Rule, the derivative of with respect to is .
Step 4.2
Evaluate .
Tap for more steps...
Step 4.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 4.2.2
Differentiate using the Product Rule which states that is where and .
Step 4.2.3
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 4.2.3.1
To apply the Chain Rule, set as .
Step 4.2.3.2
The derivative of with respect to is .
Step 4.2.3.3
Replace all occurrences of with .
Step 4.2.4
Differentiate using the Power Rule which states that is where .
Step 4.2.5
Differentiate using the Power Rule which states that is where .
Step 4.2.6
Multiply by by adding the exponents.
Tap for more steps...
Step 4.2.6.1
Move .
Step 4.2.6.2
Multiply by .
Tap for more steps...
Step 4.2.6.2.1
Raise to the power of .
Step 4.2.6.2.2
Use the power rule to combine exponents.
Step 4.2.6.3
Add and .
Step 4.2.7
Move to the left of .
Step 4.3
Evaluate .
Tap for more steps...
Step 4.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 4.3.2
Differentiate using the Product Rule which states that is where and .
Step 4.3.3
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 4.3.3.1
To apply the Chain Rule, set as .
Step 4.3.3.2
The derivative of with respect to is .
Step 4.3.3.3
Replace all occurrences of with .
Step 4.3.4
Differentiate using the Power Rule which states that is where .
Step 4.3.5
Differentiate using the Power Rule which states that is where .
Step 4.3.6
Multiply by .
Step 4.3.7
Raise to the power of .
Step 4.3.8
Raise to the power of .
Step 4.3.9
Use the power rule to combine exponents.
Step 4.3.10
Add and .
Step 4.3.11
Multiply by .
Step 4.4
Simplify.
Tap for more steps...
Step 4.4.1
Apply the distributive property.
Step 4.4.2
Apply the distributive property.
Step 4.4.3
Combine terms.
Tap for more steps...
Step 4.4.3.1
Multiply by .
Step 4.4.3.2
Multiply by .
Step 4.4.3.3
Multiply by .
Step 4.4.3.4
Add and .
Tap for more steps...
Step 4.4.3.4.1
Move .
Step 4.4.3.4.2
Add and .