Calculus Examples

Find the Derivative - d/dx xtan(x)
xtan(x)xtan(x)
Step 1
Differentiate using the Product Rule which states that ddx[f(x)g(x)]ddx[f(x)g(x)] is f(x)ddx[g(x)]+g(x)ddx[f(x)]f(x)ddx[g(x)]+g(x)ddx[f(x)] where f(x)=xf(x)=x and g(x)=tan(x)g(x)=tan(x).
xddx[tan(x)]+tan(x)ddx[x]xddx[tan(x)]+tan(x)ddx[x]
Step 2
The derivative of tan(x)tan(x) with respect to xx is sec2(x)sec2(x).
xsec2(x)+tan(x)ddx[x]xsec2(x)+tan(x)ddx[x]
Step 3
Differentiate using the Power Rule.
Tap for more steps...
Step 3.1
Differentiate using the Power Rule which states that ddx[xn]ddx[xn] is nxn-1nxn1 where n=1n=1.
xsec2(x)+tan(x)1xsec2(x)+tan(x)1
Step 3.2
Multiply tan(x)tan(x) by 11.
xsec2(x)+tan(x)xsec2(x)+tan(x)
xsec2(x)+tan(x)xsec2(x)+tan(x)
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
!
!
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]  x2  12  π  xdx