Enter a problem...
Calculus Examples
Step 1
Step 1.1
Differentiate using the chain rule, which states that is where and .
Step 1.1.1
To apply the Chain Rule, set as .
Step 1.1.2
Differentiate using the Exponential Rule which states that is where =.
Step 1.1.3
Replace all occurrences of with .
Step 1.2
Differentiate.
Step 1.2.1
By the Sum Rule, the derivative of with respect to is .
Step 1.2.2
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.3
Add and .
Step 1.2.4
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.5
Differentiate using the Power Rule which states that is where .
Step 1.2.6
Multiply by .
Step 1.2.7
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.8
Differentiate using the Power Rule which states that is where .
Step 1.2.9
Multiply by .
Step 2
Step 2.1
Differentiate using the Product Rule which states that is where and .
Step 2.2
Differentiate.
Step 2.2.1
By the Sum Rule, the derivative of with respect to is .
Step 2.2.2
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.3
Add and .
Step 2.2.4
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.5
Differentiate using the Power Rule which states that is where .
Step 2.2.6
Simplify the expression.
Step 2.2.6.1
Multiply by .
Step 2.2.6.2
Move to the left of .
Step 2.3
Differentiate using the chain rule, which states that is where and .
Step 2.3.1
To apply the Chain Rule, set as .
Step 2.3.2
Differentiate using the Exponential Rule which states that is where =.
Step 2.3.3
Replace all occurrences of with .
Step 2.4
Differentiate.
Step 2.4.1
By the Sum Rule, the derivative of with respect to is .
Step 2.4.2
Since is constant with respect to , the derivative of with respect to is .
Step 2.4.3
Add and .
Step 2.4.4
Since is constant with respect to , the derivative of with respect to is .
Step 2.4.5
Differentiate using the Power Rule which states that is where .
Step 2.4.6
Multiply by .
Step 2.4.7
Since is constant with respect to , the derivative of with respect to is .
Step 2.4.8
Differentiate using the Power Rule which states that is where .
Step 2.4.9
Multiply by .
Step 2.5
Raise to the power of .
Step 2.6
Raise to the power of .
Step 2.7
Use the power rule to combine exponents.
Step 2.8
Add and .
Step 2.9
Reorder terms.
Step 3
To find the local maximum and minimum values of the function, set the derivative equal to and solve.
Step 4
Step 4.1
Find the first derivative.
Step 4.1.1
Differentiate using the chain rule, which states that is where and .
Step 4.1.1.1
To apply the Chain Rule, set as .
Step 4.1.1.2
Differentiate using the Exponential Rule which states that is where =.
Step 4.1.1.3
Replace all occurrences of with .
Step 4.1.2
Differentiate.
Step 4.1.2.1
By the Sum Rule, the derivative of with respect to is .
Step 4.1.2.2
Since is constant with respect to , the derivative of with respect to is .
Step 4.1.2.3
Add and .
Step 4.1.2.4
Since is constant with respect to , the derivative of with respect to is .
Step 4.1.2.5
Differentiate using the Power Rule which states that is where .
Step 4.1.2.6
Multiply by .
Step 4.1.2.7
Since is constant with respect to , the derivative of with respect to is .
Step 4.1.2.8
Differentiate using the Power Rule which states that is where .
Step 4.1.2.9
Multiply by .
Step 4.2
The first derivative of with respect to is .
Step 5
Step 5.1
Set the first derivative equal to .
Step 5.2
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 5.3
Set equal to and solve for .
Step 5.3.1
Set equal to .
Step 5.3.2
Solve for .
Step 5.3.2.1
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
Step 5.3.2.2
The equation cannot be solved because is undefined.
Undefined
Step 5.3.2.3
There is no solution for
No solution
No solution
No solution
Step 5.4
Set equal to and solve for .
Step 5.4.1
Set equal to .
Step 5.4.2
Solve for .
Step 5.4.2.1
Add to both sides of the equation.
Step 5.4.2.2
Divide each term in by and simplify.
Step 5.4.2.2.1
Divide each term in by .
Step 5.4.2.2.2
Simplify the left side.
Step 5.4.2.2.2.1
Cancel the common factor of .
Step 5.4.2.2.2.1.1
Cancel the common factor.
Step 5.4.2.2.2.1.2
Divide by .
Step 5.4.2.2.3
Simplify the right side.
Step 5.4.2.2.3.1
Divide by .
Step 5.5
The final solution is all the values that make true.
Step 6
Step 6.1
The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.
Step 7
Critical points to evaluate.
Step 8
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 9
Step 9.1
Simplify each term.
Step 9.1.1
Simplify each term.
Step 9.1.1.1
Multiply by .
Step 9.1.1.2
Raise to the power of .
Step 9.1.1.3
Multiply by .
Step 9.1.2
Subtract from .
Step 9.1.3
Add and .
Step 9.1.4
Rewrite the expression using the negative exponent rule .
Step 9.1.5
Multiply by .
Step 9.1.6
Add and .
Step 9.1.7
Raising to any positive power yields .
Step 9.1.8
Multiply by .
Step 9.1.9
Simplify each term.
Step 9.1.9.1
Multiply by .
Step 9.1.9.2
Raise to the power of .
Step 9.1.9.3
Multiply by .
Step 9.1.10
Subtract from .
Step 9.1.11
Add and .
Step 9.1.12
Rewrite the expression using the negative exponent rule .
Step 9.1.13
Combine and .
Step 9.2
Add and .
Step 10
is a local minimum because the value of the second derivative is positive. This is referred to as the second derivative test.
is a local minimum
Step 11
Step 11.1
Replace the variable with in the expression.
Step 11.2
Simplify the result.
Step 11.2.1
Simplify each term.
Step 11.2.1.1
Multiply by .
Step 11.2.1.2
Raise to the power of .
Step 11.2.1.3
Multiply by .
Step 11.2.2
Simplify by adding and subtracting.
Step 11.2.2.1
Subtract from .
Step 11.2.2.2
Add and .
Step 11.2.3
Rewrite the expression using the negative exponent rule .
Step 11.2.4
The final answer is .
Step 12
These are the local extrema for .
is a local minima
Step 13