Calculus Examples

Find the Antiderivative sec(x)^2
sec2(x)sec2(x)
Step 1
Write sec2(x)sec2(x) as a function.
f(x)=sec2(x)f(x)=sec2(x)
Step 2
The function F(x)F(x) can be found by finding the indefinite integral of the derivative f(x)f(x).
F(x)=f(x)dxF(x)=f(x)dx
Step 3
Set up the integral to solve.
F(x)=sec2(x)dxF(x)=sec2(x)dx
Step 4
Since the derivative of tan(x)tan(x) is sec2(x)sec2(x), the integral of sec2(x)sec2(x) is tan(x)tan(x).
tan(x)+Ctan(x)+C
Step 5
The answer is the antiderivative of the function f(x)=sec2(x)f(x)=sec2(x).
F(x)=F(x)=tan(x)+Ctan(x)+C
 [x2  12  π  xdx ]  x2  12  π  xdx