Enter a problem...
Calculus Examples
y=xy=x , y=x2y=x2
Step 1
Step 1.1
Eliminate the equal sides of each equation and combine.
x=x2x=x2
Step 1.2
Solve x=x2x=x2 for xx.
Step 1.2.1
Subtract x2x2 from both sides of the equation.
x-x2=0x−x2=0
Step 1.2.2
Factor the left side of the equation.
Step 1.2.2.1
Let u=xu=x. Substitute uu for all occurrences of xx.
u-u2=0u−u2=0
Step 1.2.2.2
Factor uu out of u-u2u−u2.
Step 1.2.2.2.1
Raise uu to the power of 11.
u-u2=0u−u2=0
Step 1.2.2.2.2
Factor uu out of u1u1.
u⋅1-u2=0u⋅1−u2=0
Step 1.2.2.2.3
Factor uu out of -u2−u2.
u⋅1+u(-u)=0u⋅1+u(−u)=0
Step 1.2.2.2.4
Factor uu out of u⋅1+u(-u)u⋅1+u(−u).
u(1-u)=0u(1−u)=0
u(1-u)=0u(1−u)=0
Step 1.2.2.3
Replace all occurrences of uu with xx.
x(1-x)=0x(1−x)=0
x(1-x)=0x(1−x)=0
Step 1.2.3
If any individual factor on the left side of the equation is equal to 00, the entire expression will be equal to 00.
x=0x=0
1-x=0+y=x21−x=0+y=x2
Step 1.2.4
Set xx equal to 00.
x=0x=0
Step 1.2.5
Set 1-x1−x equal to 00 and solve for xx.
Step 1.2.5.1
Set 1-x1−x equal to 00.
1-x=01−x=0
Step 1.2.5.2
Solve 1-x=01−x=0 for xx.
Step 1.2.5.2.1
Subtract 11 from both sides of the equation.
-x=-1−x=−1
Step 1.2.5.2.2
Divide each term in -x=-1−x=−1 by -1−1 and simplify.
Step 1.2.5.2.2.1
Divide each term in -x=-1−x=−1 by -1−1.
-x-1=-1-1−x−1=−1−1
Step 1.2.5.2.2.2
Simplify the left side.
Step 1.2.5.2.2.2.1
Dividing two negative values results in a positive value.
x1=-1-1x1=−1−1
Step 1.2.5.2.2.2.2
Divide xx by 11.
x=-1-1x=−1−1
x=-1-1x=−1−1
Step 1.2.5.2.2.3
Simplify the right side.
Step 1.2.5.2.2.3.1
Divide -1−1 by -1−1.
x=1x=1
x=1x=1
x=1x=1
x=1x=1
x=1x=1
Step 1.2.6
The final solution is all the values that make x(1-x)=0x(1−x)=0 true.
x=0,1x=0,1
x=0,1x=0,1
Step 1.3
Evaluate yy when x=0x=0.
Step 1.3.1
Substitute 0 for x.
y=(0)2
Step 1.3.2
Substitute 0 for x in y=(0)2 and solve for y.
Step 1.3.2.1
Remove parentheses.
y=02
Step 1.3.2.2
Raising 0 to any positive power yields 0.
y=0
y=0
y=0
Step 1.4
Evaluate y when x=1.
Step 1.4.1
Substitute 1 for x.
y=(1)2
Step 1.4.2
Substitute 1 for x in y=(1)2 and solve for y.
Step 1.4.2.1
Remove parentheses.
y=12
Step 1.4.2.2
One to any power is one.
y=1
y=1
y=1
Step 1.5
The solution to the system is the complete set of ordered pairs that are valid solutions.
(0,0)
(1,1)
(0,0)
(1,1)
Step 2
The area of the region between the curves is defined as the integral of the upper curve minus the integral of the lower curve over each region. The regions are determined by the intersection points of the curves. This can be done algebraically or graphically.
Area=∫10xdx-∫10x2dx
Step 3
Step 3.1
Combine the integrals into a single integral.
∫10x-(x2)dx
Step 3.2
Multiply -1 by x2.
∫10x-x2dx
Step 3.3
Split the single integral into multiple integrals.
∫10xdx+∫10-x2dx
Step 3.4
By the Power Rule, the integral of x with respect to x is 12x2.
12x2]10+∫10-x2dx
Step 3.5
Since -1 is constant with respect to x, move -1 out of the integral.
12x2]10-∫10x2dx
Step 3.6
By the Power Rule, the integral of x2 with respect to x is 13x3.
12x2]10-(13x3]10)
Step 3.7
Simplify the answer.
Step 3.7.1
Combine 13 and x3.
12x2]10-(x33]10)
Step 3.7.2
Substitute and simplify.
Step 3.7.2.1
Evaluate 12x2 at 1 and at 0.
(12⋅12)-12⋅02-(x33]10)
Step 3.7.2.2
Evaluate x33 at 1 and at 0.
12⋅12-12⋅02-(133-033)
Step 3.7.2.3
Simplify.
Step 3.7.2.3.1
One to any power is one.
12⋅1-12⋅02-(133-033)
Step 3.7.2.3.2
Multiply 12 by 1.
12-12⋅02-(133-033)
Step 3.7.2.3.3
Raising 0 to any positive power yields 0.
12-12⋅0-(133-033)
Step 3.7.2.3.4
Multiply 0 by -1.
12+0(12)-(133-033)
Step 3.7.2.3.5
Multiply 0 by 12.
12+0-(133-033)
Step 3.7.2.3.6
Add 12 and 0.
12-(133-033)
Step 3.7.2.3.7
One to any power is one.
12-(13-033)
Step 3.7.2.3.8
Raising 0 to any positive power yields 0.
12-(13-03)
Step 3.7.2.3.9
Cancel the common factor of 0 and 3.
Step 3.7.2.3.9.1
Factor 3 out of 0.
12-(13-3(0)3)
Step 3.7.2.3.9.2
Cancel the common factors.
Step 3.7.2.3.9.2.1
Factor 3 out of 3.
12-(13-3⋅03⋅1)
Step 3.7.2.3.9.2.2
Cancel the common factor.
12-(13-3⋅03⋅1)
Step 3.7.2.3.9.2.3
Rewrite the expression.
12-(13-01)
Step 3.7.2.3.9.2.4
Divide 0 by 1.
12-(13-0)
12-(13-0)
12-(13-0)
Step 3.7.2.3.10
Multiply -1 by 0.
12-(13+0)
Step 3.7.2.3.11
Add 13 and 0.
12-13
Step 3.7.2.3.12
To write 12 as a fraction with a common denominator, multiply by 33.
12⋅33-13
Step 3.7.2.3.13
To write -13 as a fraction with a common denominator, multiply by 22.
12⋅33-13⋅22
Step 3.7.2.3.14
Write each expression with a common denominator of 6, by multiplying each by an appropriate factor of 1.
Step 3.7.2.3.14.1
Multiply 12 by 33.
32⋅3-13⋅22
Step 3.7.2.3.14.2
Multiply 2 by 3.
36-13⋅22
Step 3.7.2.3.14.3
Multiply 13 by 22.
36-23⋅2
Step 3.7.2.3.14.4
Multiply 3 by 2.
36-26
36-26
Step 3.7.2.3.15
Combine the numerators over the common denominator.
3-26
Step 3.7.2.3.16
Subtract 2 from 3.
16
16
16
16
16
Step 4